Nuprl Lemma : div_mul_add_cancel

[a:ℕ]. ∀[b:ℕ+]. ∀[r:ℕb].  ((((a b) r) ÷ b) a ∈ ℤ)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat_plus: + nat: uall: [x:A]. B[x] divide: n ÷ m multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: nat_plus: + int_seg: {i..j-} subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] guard: {T} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top uiff: uiff(P;Q) div_nrel: Div(a;n;q)
Lemmas referenced :  div_unique2 add_nat_wf multiply_nat_wf nat_plus_subtype_nat int_seg_subtype_nat false_wf nat_wf nat_properties int_seg_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf itermAdd_wf itermMultiply_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf le_wf mul_bounds_1a decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality addEquality multiplyEquality setElimination rename hypothesisEquality hypothesis because_Cache applyEquality sqequalRule natural_numberEquality independent_isectElimination independent_pairFormation lambdaFormation equalityTransitivity equalitySymmetry applyLambdaEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination axiomEquality

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[b:\mBbbN{}\msupplus{}].  \mforall{}[r:\mBbbN{}b].    ((((a  *  b)  +  r)  \mdiv{}  b)  =  a)



Date html generated: 2017_04_14-AM-09_15_45
Last ObjectModification: 2017_02_27-PM-03_53_08

Theory : int_2


Home Index