Nuprl Lemma : imin_lb
∀a,b,c:ℤ.  (imin(a;b) ≤ c 
⇐⇒ (a ≤ c) ∨ (b ≤ c))
Proof
Definitions occuring in Statement : 
imin: imin(a;b)
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
int: ℤ
Definitions unfolded in proof : 
imin: imin(a;b)
, 
all: ∀x:A. B[x]
, 
has-value: (a)↓
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
or_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
callbyvalueReduce, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_pairFormation, 
inlFormation, 
dependent_functionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
inrFormation
Latex:
\mforall{}a,b,c:\mBbbZ{}.    (imin(a;b)  \mleq{}  c  \mLeftarrow{}{}\mRightarrow{}  (a  \mleq{}  c)  \mvee{}  (b  \mleq{}  c))
Date html generated:
2017_04_14-AM-09_14_45
Last ObjectModification:
2017_02_27-PM-03_52_51
Theory : int_2
Home
Index