Nuprl Lemma : sum_arith

[n:ℕ]. ∀[a,b:ℤ].  (a (b i) i < n) ((n (a (b (n 1)))) ÷ 2) ∈ ℤ)


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) nat: uall: [x:A]. B[x] divide: n ÷ m multiply: m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] int_seg: {i..j-} nat: so_apply: x[s] true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False prop: int_nzero: -o ge: i ≥  decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B
Lemmas referenced :  sum_arith1 nat_wf mul_cancel_in_eq sum_wf int_seg_wf subtype_base_sq int_subtype_base equal-wf-base nequal_wf div_rem_sum nat_properties decidable__equal_int add-is-int-iff multiply-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermMultiply_wf itermConstant_wf itermVar_wf itermAdd_wf itermSubtract_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_subtract_lemma int_formula_prop_wf false_wf mul-commutes rem-exact
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :inhabitedIsType,  sqequalRule isect_memberEquality axiomEquality intEquality Error :universeIsType,  because_Cache lambdaEquality addEquality multiplyEquality setElimination rename natural_numberEquality divideEquality equalityTransitivity equalitySymmetry lambdaFormation instantiate cumulativity independent_isectElimination dependent_functionElimination independent_functionElimination voidElimination baseClosed dependent_set_memberEquality unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion productElimination approximateComputation dependent_pairFormation int_eqEquality voidEquality independent_pairFormation hyp_replacement applyLambdaEquality applyEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b:\mBbbZ{}].    (\mSigma{}(a  +  (b  *  i)  |  i  <  n)  =  ((n  *  (a  +  a  +  (b  *  (n  -  1))))  \mdiv{}  2))



Date html generated: 2019_06_20-PM-01_18_12
Last ObjectModification: 2018_09_26-PM-02_38_30

Theory : int_2


Home Index