Nuprl Lemma : assert-poly-zero
∀n:ℕ. ∀p:polynom(n).  (↑poly-zero(n;p) ⇐⇒ ∀l:{l:ℤ List| ||l|| = n ∈ ℤ} . (p@l = 0 ∈ ℤ))
Proof
Definitions occuring in Statement : 
poly-int-val: p@l, 
polynom: polynom(n), 
poly-zero: poly-zero(n;p), 
length: ||as||, 
list: T List, 
nat: ℕ, 
assert: ↑b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
set: {x:A| B[x]} , 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
squash: ↓T, 
top: Top, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
ge: i ≥ j , 
not: ¬A, 
decidable: Dec(P), 
true: True, 
rev_implies: P ⇐ Q, 
so_apply: x[s], 
nat: ℕ, 
so_lambda: λ2x.t[x], 
iff: P ⇐⇒ Q, 
false: False, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
prop: ℙ, 
exists: ∃x:A. B[x], 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
iff_weakening_equal, 
squash_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
false_wf, 
not_wf, 
poly-zero-false, 
decidable__equal_int, 
poly-int-val_wf2, 
equal-wf-T-base, 
all_wf, 
true_wf, 
int_subtype_base, 
list_subtype_base, 
equal-wf-base-T, 
list_wf, 
set_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
eqtt_to_assert, 
bool_wf, 
polynom_subtype_polyform, 
poly-zero_wf, 
nat_wf, 
polynom_wf
Rules used in proof : 
imageMemberEquality, 
universeEquality, 
imageElimination, 
computeAll, 
voidEquality, 
isect_memberEquality, 
dependent_set_memberEquality, 
setEquality, 
natural_numberEquality, 
rename, 
setElimination, 
baseClosed, 
closedConclusion, 
baseApply, 
lambdaEquality, 
intEquality, 
independent_pairFormation, 
voidElimination, 
because_Cache, 
independent_functionElimination, 
cumulativity, 
instantiate, 
dependent_functionElimination, 
promote_hyp, 
dependent_pairFormation, 
independent_isectElimination, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
sqequalRule, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:polynom(n).    (\muparrow{}poly-zero(n;p)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  .  (p@l  =  0))
Date html generated:
2017_04_17-AM-09_05_38
Last ObjectModification:
2017_04_13-PM-01_30_46
Theory : list_1
Home
Index