Nuprl Lemma : imax-list-subset
∀[L,L':ℤ List].  (imax-list(L) ≤ imax-list(L')) supposing (l_subset(ℤ;L;L') and 0 < ||L||)
Proof
Definitions occuring in Statement : 
l_subset: l_subset(T;as;bs)
, 
imax-list: imax-list(L)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
guard: {T}
, 
l_subset: l_subset(T;as;bs)
Lemmas referenced : 
and_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
l_exists_iff, 
imax-list-ub, 
l_member_wf, 
le_wf, 
l_all_iff, 
list_wf, 
length_wf, 
less_than_wf, 
l_subset_wf, 
less_than'_wf, 
imax-list_wf, 
imax-list-lb, 
l_subset_pos_length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
productElimination, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
natural_numberEquality, 
voidElimination, 
setElimination, 
rename, 
setEquality, 
independent_functionElimination, 
lambdaFormation, 
dependent_pairFormation, 
independent_pairFormation, 
unionElimination, 
int_eqEquality, 
voidEquality, 
computeAll
Latex:
\mforall{}[L,L':\mBbbZ{}  List].    (imax-list(L)  \mleq{}  imax-list(L'))  supposing  (l\_subset(\mBbbZ{};L;L')  and  0  <  ||L||)
Date html generated:
2016_05_14-PM-01_41_56
Last ObjectModification:
2016_01_15-AM-08_23_19
Theory : list_1
Home
Index