Nuprl Lemma : length_zip
∀[T1,T2:Type]. ∀[as:T1 List]. ∀[bs:T2 List]. ||zip(as;bs)|| = ||as|| ∈ ℤ supposing ||as|| = ||bs|| ∈ ℤ
Proof
Definitions occuring in Statement :
zip: zip(as;bs)
,
length: ||as||
,
list: T List
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
int: ℤ
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
uimplies: b supposing a
,
prop: ℙ
,
so_apply: x[s]
,
implies: P
⇒ Q
,
zip: zip(as;bs)
,
list_ind: list_ind,
nil: []
,
it: ⋅
,
all: ∀x:A. B[x]
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
top: Top
,
so_apply: x[s1;s2;s3]
,
squash: ↓T
,
guard: {T}
,
decidable: Dec(P)
,
or: P ∨ Q
,
false: False
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
true: True
,
subtype_rel: A ⊆r B
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
list_induction,
uall_wf,
list_wf,
isect_wf,
equal_wf,
length_wf,
zip_wf,
equal-wf-base-T,
equal-wf-T-base,
nil_wf,
length_of_nil_lemma,
list_ind_nil_lemma,
equal-wf-base,
length_of_cons_lemma,
cons_wf,
list_ind_cons_lemma,
squash_wf,
true_wf,
add_functionality_wrt_eq,
decidable__equal_int,
add-is-int-iff,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformeq_wf,
itermVar_wf,
itermAdd_wf,
itermConstant_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
false_wf,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
sqequalRule,
lambdaEquality,
cumulativity,
hypothesis,
intEquality,
because_Cache,
productEquality,
independent_functionElimination,
baseClosed,
voidEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
equalityTransitivity,
equalitySymmetry,
lambdaFormation,
rename,
addEquality,
natural_numberEquality,
axiomEquality,
applyEquality,
imageElimination,
independent_isectElimination,
unionElimination,
pointwiseFunctionality,
promote_hyp,
baseApply,
closedConclusion,
productElimination,
dependent_pairFormation,
int_eqEquality,
independent_pairFormation,
computeAll,
imageMemberEquality,
universeEquality
Latex:
\mforall{}[T1,T2:Type]. \mforall{}[as:T1 List]. \mforall{}[bs:T2 List]. ||zip(as;bs)|| = ||as|| supposing ||as|| = ||bs||
Date html generated:
2017_04_17-AM-08_55_08
Last ObjectModification:
2017_02_27-PM-05_10_44
Theory : list_1
Home
Index