Nuprl Lemma : list-match-aux_wf

[A,B:Type]. ∀[R:A ⟶ B ⟶ ℙ]. ∀[as:A List]. ∀[bs:B List]. ∀[used:ℤ List].  (list-match-aux(as;bs;used;a,b.R[a;b]) ∈ ℙ)


Proof




Definitions occuring in Statement :  list-match-aux: list-match-aux(L1;L2;used;a,b.R[a; b]) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list-match-aux: list-match-aux(L1;L2;used;a,b.R[a; b]) so_lambda: λ2x.t[x] prop: and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s1;s2] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top less_than: a < b squash: T ge: i ≥  nat: so_apply: x[s]
Lemmas referenced :  sq_exists_wf int_seg_wf length_wf inject_wf all_wf not_wf l_member_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma non_neg_length lelt_wf length_wf_nat nat_properties list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality natural_numberEquality cumulativity hypothesisEquality hypothesis because_Cache lambdaEquality productEquality functionExtensionality applyEquality intEquality setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation imageElimination dependent_set_memberEquality equalityTransitivity equalitySymmetry applyLambdaEquality axiomEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].  \mforall{}[used:\mBbbZ{}  List].
    (list-match-aux(as;bs;used;a,b.R[a;b])  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-PM-00_46_29
Last ObjectModification: 2018_05_19-AM-06_49_39

Theory : list_1


Home Index