Nuprl Lemma : list_ind_reverse_unfold
∀[A,B:Type].
  ∀nilcase:B. ∀F:B ⟶ (A List) ⟶ A ⟶ B. ∀L:A List.
    ((||L|| > 0)
    ⇒ (list_ind_reverse(L;nilcase;F) ~ F list_ind_reverse(firstn(||L|| - 1;L);nilcase;F) firstn(||L|| - 1;L) last(L)))
Proof
Definitions occuring in Statement : 
list_ind_reverse: list_ind_reverse(L;nilcase;R), 
firstn: firstn(n;as), 
last: last(L), 
length: ||as||, 
list: T List, 
uall: ∀[x:A]. B[x], 
gt: i > j, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
subtract: n - m, 
natural_number: $n, 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
list_ind_reverse: list_ind_reverse(L;nilcase;R), 
prop: ℙ, 
gt: i > j, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
gt_wf, 
length_wf, 
list_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
natural_numberEquality, 
functionEquality, 
lambdaEquality, 
dependent_functionElimination, 
sqequalAxiom, 
because_Cache, 
universeEquality, 
isect_memberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
promote_hyp, 
instantiate, 
independent_functionElimination
Latex:
\mforall{}[A,B:Type].
    \mforall{}nilcase:B.  \mforall{}F:B  {}\mrightarrow{}  (A  List)  {}\mrightarrow{}  A  {}\mrightarrow{}  B.  \mforall{}L:A  List.
        ((||L||  >  0)
        {}\mRightarrow{}  (list\_ind\_reverse(L;nilcase;F)  \msim{}  F  list\_ind\_reverse(firstn(||L||  -  1;L);nilcase;F) 
                                                                                firstn(||L||  -  1;L) 
                                                                                last(L)))
Date html generated:
2017_04_17-AM-08_44_17
Last ObjectModification:
2017_02_27-PM-05_01_25
Theory : list_1
Home
Index