Nuprl Lemma : rotate-inverse

[n:ℕ+]. (inv(rot(n)) rot(n)^n 1 ∈ {f:ℕn ⟶ ℕn| Inj(ℕn;ℕn;f)} )


Proof




Definitions occuring in Statement :  rotate: rot(n) funinv: inv(f) fun_exp: f^n inject: Inj(A;B;f) int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] subtract: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B nat_plus: + prop: nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  funinv-unique nat_plus_subtype_nat rotate-injection rotate_wf inject_wf int_seg_wf fun_exp_wf subtract_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf equal_wf squash_wf true_wf rotate-inverse1 iff_weakening_equal nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule because_Cache dependent_set_memberEquality natural_numberEquality setElimination rename functionExtensionality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination equalityTransitivity equalitySymmetry universeEquality functionEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (inv(rot(n))  =  rot(n)\^{}n  -  1)



Date html generated: 2017_04_17-AM-08_09_22
Last ObjectModification: 2017_02_27-PM-04_36_12

Theory : list_1


Home Index