Nuprl Lemma : upto_iseg

i,j:ℕ.  upto(i) ≤ upto(j) supposing i ≤ j


Proof




Definitions occuring in Statement :  upto: upto(n) iseg: l1 ≤ l2 int_seg: {i..j-} nat: uimplies: supposing a le: A ≤ B all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False uall: [x:A]. B[x] nat: prop: iseg: l1 ≤ l2 int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top uiff: uiff(P;Q) subtype_rel: A ⊆B
Lemmas referenced :  nat_wf le_wf list_wf equal_wf int_seg_subtype subtype_rel_list append_wf upto_wf int_term_value_subtract_lemma itermSubtract_wf decidable__le add-member-int_seg2 subtract_wf int_seg_wf map_wf lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties upto_decomp less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality voidElimination lemma_by_obid isectElimination setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality independent_pairFormation addEquality natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality computeAll because_Cache applyEquality

Latex:
\mforall{}i,j:\mBbbN{}.    upto(i)  \mleq{}  upto(j)  supposing  i  \mleq{}  j



Date html generated: 2016_05_14-PM-02_04_12
Last ObjectModification: 2016_01_15-AM-08_05_22

Theory : list_1


Home Index