Nuprl Lemma : sign-absval
∀[x:ℤ]. ((sign(x) * |x|) = x ∈ ℤ)
Proof
Definitions occuring in Statement :
sign: sign(x)
,
absval: |i|
,
uall: ∀[x:A]. B[x]
,
multiply: n * m
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
sign: sign(x)
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
less_than: a < b
,
less_than': less_than'(a;b)
,
top: Top
,
true: True
,
squash: ↓T
,
not: ¬A
,
false: False
,
prop: ℙ
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
Lemmas referenced :
absval_unfold,
le_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_le_int,
lt_int_wf,
assert_of_lt_int,
top_wf,
less_than_wf,
decidable__equal_int,
satisfiable-full-omega-tt,
intformnot_wf,
intformeq_wf,
itermMultiply_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_term_value_mul_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
intformand_wf,
intformle_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_formula_prop_less_lemma,
le_wf,
itermMinus_wf,
int_term_value_minus_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
cut,
sqequalRule,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
natural_numberEquality,
lambdaFormation,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
independent_isectElimination,
because_Cache,
minusEquality,
lessCases,
sqequalAxiom,
isect_memberEquality,
independent_pairFormation,
voidElimination,
voidEquality,
imageMemberEquality,
baseClosed,
imageElimination,
independent_functionElimination,
dependent_functionElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
computeAll,
promote_hyp,
instantiate,
cumulativity
Latex:
\mforall{}[x:\mBbbZ{}]. ((sign(x) * |x|) = x)
Date html generated:
2017_04_17-AM-09_45_28
Last ObjectModification:
2017_02_27-PM-05_40_03
Theory : num_thy_1
Home
Index