Nuprl Lemma : sign-absval

[x:ℤ]. ((sign(x) |x|) x ∈ ℤ)


Proof




Definitions occuring in Statement :  sign: sign(x) absval: |i| uall: [x:A]. B[x] multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] sign: sign(x) member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  absval_unfold le_int_wf bool_wf eqtt_to_assert assert_of_le_int lt_int_wf assert_of_lt_int top_wf less_than_wf decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermMultiply_wf itermConstant_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot intformand_wf intformle_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_formula_prop_less_lemma le_wf itermMinus_wf int_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache minusEquality lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll promote_hyp instantiate cumulativity

Latex:
\mforall{}[x:\mBbbZ{}].  ((sign(x)  *  |x|)  =  x)



Date html generated: 2017_04_17-AM-09_45_28
Last ObjectModification: 2017_02_27-PM-05_40_03

Theory : num_thy_1


Home Index