Nuprl Lemma : vexample_wf

n,a:ℕ. ∀b:{b:ℕ(((a a) (b b)) 1) ((a b) 3) ∈ ℤ.
  (vexample(n;a;b) ∈ a:ℕ × {b:ℕ(((a a) (b b)) 1) ((a b) 3) ∈ ℤ)


Proof




Definitions occuring in Statement :  vexample: vexample(n;a;b) nat: all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: vexample: vexample(n;a;b) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] has-value: (a)↓ decidable: Dec(P) or: P ∨ Q nat_plus: + squash: T true: True guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than set_subtype_base le_wf int_subtype_base istype-nat subtract-1-ge-0 intformeq_wf int_formula_prop_eq_lemma value-type-has-value int-value-type subtract_wf decidable__equal_int intformnot_wf itermAdd_wf itermMultiply_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_add_lemma int_term_value_mul_lemma int_term_value_subtract_lemma nat_wf equal_wf decidable__le istype-le decidable__lt exp_preserves_lt less_than_wf squash_wf true_wf exp2 subtype_rel_self iff_weakening_equal mul_bounds_1a
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :setIsType,  because_Cache Error :equalityIstype,  baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase Error :dependent_pairEquality_alt,  Error :dependent_set_memberEquality_alt,  int_eqReduceFalseSq callbyvalueReduce multiplyEquality unionElimination addEquality imageElimination imageMemberEquality instantiate universeEquality productElimination

Latex:
\mforall{}n,a:\mBbbN{}.  \mforall{}b:\{b:\mBbbN{}|  (((a  *  a)  +  (b  *  b))  +  1)  =  ((a  *  b)  *  3)\}  .
    (vexample(n;a;b)  \mmember{}  a:\mBbbN{}  \mtimes{}  \{b:\mBbbN{}|  (((a  *  a)  +  (b  *  b))  +  1)  =  ((a  *  b)  *  3)\}  )



Date html generated: 2019_06_20-PM-02_43_31
Last ObjectModification: 2019_03_11-PM-05_55_04

Theory : num_thy_1


Home Index