Nuprl Lemma : exact-reduce-constraints-sqequal

[w:ℤ List]. ∀[j:ℕ||w||]. ∀[L:{l:ℤ List| ||l|| ||w|| ∈ ℤ}  List].
  (exact-reduce-constraints(w;j;L) map(λv.-(w[j] v[j]) w\j v\j;L))


Proof




Definitions occuring in Statement :  exact-reduce-constraints: exact-reduce-constraints(w;j;L) int-vec-add: as bs int-vec-mul: as list-delete: as\i select: L[n] length: ||as|| map: map(f;as) list: List int_seg: {i..j-} uall: [x:A]. B[x] set: {x:A| B[x]}  lambda: λx.A[x] multiply: m minus: -n natural_number: $n int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] exact-reduce-constraints: exact-reduce-constraints(w;j;L) sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k and: P ∧ Q squash: T le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A true: True iff: ⇐⇒ Q rev_implies:  Q top: Top
Lemmas referenced :  subtype_base_sq list_wf equal-wf-base list_subtype_base int_subtype_base set_subtype_base int_seg_wf length_wf map_wf equal_wf int-vec-add_wf int-vec-mul_wf select_wf sq_stable__le less_than_transitivity1 le_weakening list-delete_wf squash_wf true_wf length-int-vec-add length-list-delete int_seg_subtype_nat false_wf subtract_wf iff_weakening_equal length-int-vec-mul evalall-reduce list-valueall-type set-valueall-type int-valueall-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity setEquality intEquality hypothesis sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality independent_isectElimination because_Cache lambdaEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom isect_memberEquality natural_numberEquality lambdaFormation setElimination rename dependent_set_memberEquality minusEquality multiplyEquality productElimination imageMemberEquality imageElimination universeEquality equalityUniverse levelHypothesis independent_pairFormation voidElimination voidEquality

Latex:
\mforall{}[w:\mBbbZ{}  List].  \mforall{}[j:\mBbbN{}||w||].  \mforall{}[L:\{l:\mBbbZ{}  List|  ||l||  =  ||w||\}    List].
    (exact-reduce-constraints(w;j;L)  \msim{}  map(\mlambda{}v.-(w[j]  *  v[j])  *  w\mbackslash{}j  +  v\mbackslash{}j;L))



Date html generated: 2017_04_14-AM-09_05_10
Last ObjectModification: 2017_02_27-PM-03_44_51

Theory : omega


Home Index