Nuprl Lemma : length-int-vec-add

[as,bs:ℤ List].  ||as bs|| ||bs|| ∈ ℤ supposing ||as|| ||bs|| ∈ ℤ


Proof




Definitions occuring in Statement :  int-vec-add: as bs length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a subtype_rel: A ⊆B prop: so_apply: x[s] implies:  Q int-vec-add: as bs nil: [] it: all: x:A. B[x] top: Top length: ||as|| list_ind: list_ind cons: [a b] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] true: True squash: T guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q not: ¬A false: False uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  list_induction uall_wf list_wf isect_wf equal-wf-base length_of_nil_lemma length_of_cons_lemma spread_cons_lemma int_subtype_base list_subtype_base length_wf int-vec-add_wf equal_wf squash_wf true_wf add_functionality_wrt_eq iff_weakening_equal decidable__equal_int false_wf not-equal-2 le_antisymmetry_iff condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top zero-add add-commutes add_functionality_wrt_le le-add-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality intEquality hypothesis baseApply closedConclusion baseClosed hypothesisEquality applyEquality independent_functionElimination natural_numberEquality lambdaFormation rename dependent_functionElimination isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry independent_isectElimination addEquality imageElimination universeEquality imageMemberEquality productElimination unionElimination independent_pairFormation minusEquality

Latex:
\mforall{}[as,bs:\mBbbZ{}  List].    ||as  +  bs||  =  ||bs||  supposing  ||as||  =  ||bs||



Date html generated: 2017_04_14-AM-08_55_41
Last ObjectModification: 2017_02_27-PM-03_39_34

Theory : omega


Home Index