Nuprl Lemma : test-omega-auto-split

n:ℤ(if 2 <then if 1 <then else fi  if n ≤then else fi  if 2 <then else fi )


Proof




Definitions occuring in Statement :  le_int: i ≤j ifthenelse: if then else fi  lt_int: i <j all: x:A. B[x] natural_number: $n int: sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf full-omega-unsat intformand_wf intformless_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf le_int_wf assert_of_le_int le_wf intformle_wf int_formula_prop_le_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality hypothesis unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule because_Cache dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination approximateComputation lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation

Latex:
\mforall{}n:\mBbbZ{}
    (if  2  <z  n  then  if  1  <z  n  then  1  else  2  fi 
    if  n  \mleq{}z  3  then  3
    else  4
    fi    \msim{}  if  2  <z  n  then  1  else  3  fi  )



Date html generated: 2018_05_21-PM-00_24_39
Last ObjectModification: 2018_05_19-AM-06_58_33

Theory : omega


Home Index