Nuprl Lemma : fixpoint-induction2

A:Type. ∀T:A ⟶ Type.
  ((A ⊆Base)
   (∀a:A. value-type(T[a]))
   (∀a:A. mono(T[a]))
   (∀f:(a:A ⟶ partial(T[a])) ⟶ a:A ⟶ partial(T[a]) ⋂ Base. (fix(f) ∈ a:A ⟶ partial(T[a]))))


Proof




Definitions occuring in Statement :  partial: partial(T) mono: mono(T) isect2: T1 ⋂ T2 value-type: value-type(T) subtype_rel: A ⊆B so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T fix: fix(F) function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] top: Top so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] guard: {T} mono: mono(T) is-above: is-above(T;a;z) exists: x:A. B[x] nat: not: ¬A is-exception: is-exception(t) false: False
Lemmas referenced :  void_wf strictness-apply bottom_wf-partial base-member-partial isect2_subtype_rel2 partial_wf base_wf isect2_wf all_wf mono_wf value-type_wf subtype_rel_wf has-value_wf_base isect2_decomp termination fun_exp_wf set_subtype_base le_wf int_subtype_base fixpoint-upper-bound is-exception_wf equal-wf-base-T sqle_wf_base partial-not-exception isect2_subtype_rel equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut functionExtensionality voidElimination thin instantiate introduction extract_by_obid hypothesis independent_pairFormation because_Cache sqequalRule sqequalHypSubstitution isectElimination isect_memberEquality voidEquality productElimination applyEquality hypothesisEquality cumulativity independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed functionEquality lambdaEquality universeEquality isect_memberFormation axiomEquality compactness independent_functionElimination dependent_pairFormation intEquality natural_numberEquality sqleRule divergentSqle sqleReflexivity productEquality exceptionCompactness

Latex:
\mforall{}A:Type.  \mforall{}T:A  {}\mrightarrow{}  Type.
    ((A  \msubseteq{}r  Base)
    {}\mRightarrow{}  (\mforall{}a:A.  value-type(T[a]))
    {}\mRightarrow{}  (\mforall{}a:A.  mono(T[a]))
    {}\mRightarrow{}  (\mforall{}f:(a:A  {}\mrightarrow{}  partial(T[a]))  {}\mrightarrow{}  a:A  {}\mrightarrow{}  partial(T[a])  \mcap{}  Base.  (fix(f)  \mmember{}  a:A  {}\mrightarrow{}  partial(T[a]))))



Date html generated: 2017_04_14-AM-07_41_21
Last ObjectModification: 2017_02_27-PM-03_13_13

Theory : partial_1


Home Index