Nuprl Lemma : fixpoint-induction2
∀A:Type. ∀T:A ⟶ Type.
  ((A ⊆r Base)
  
⇒ (∀a:A. value-type(T[a]))
  
⇒ (∀a:A. mono(T[a]))
  
⇒ (∀f:(a:A ⟶ partial(T[a])) ⟶ a:A ⟶ partial(T[a]) ⋂ Base. (fix(f) ∈ a:A ⟶ partial(T[a]))))
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
mono: mono(T)
, 
isect2: T1 ⋂ T2
, 
value-type: value-type(T)
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
fix: fix(F)
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
mono: mono(T)
, 
is-above: is-above(T;a;z)
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
not: ¬A
, 
is-exception: is-exception(t)
, 
false: False
Lemmas referenced : 
void_wf, 
strictness-apply, 
bottom_wf-partial, 
base-member-partial, 
isect2_subtype_rel2, 
partial_wf, 
base_wf, 
isect2_wf, 
all_wf, 
mono_wf, 
value-type_wf, 
subtype_rel_wf, 
has-value_wf_base, 
isect2_decomp, 
termination, 
fun_exp_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
fixpoint-upper-bound, 
is-exception_wf, 
equal-wf-base-T, 
sqle_wf_base, 
partial-not-exception, 
isect2_subtype_rel, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
functionExtensionality, 
voidElimination, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
independent_pairFormation, 
because_Cache, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
isect_memberEquality, 
voidEquality, 
productElimination, 
applyEquality, 
hypothesisEquality, 
cumulativity, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseApply, 
closedConclusion, 
baseClosed, 
functionEquality, 
lambdaEquality, 
universeEquality, 
isect_memberFormation, 
axiomEquality, 
compactness, 
independent_functionElimination, 
dependent_pairFormation, 
intEquality, 
natural_numberEquality, 
sqleRule, 
divergentSqle, 
sqleReflexivity, 
productEquality, 
exceptionCompactness
Latex:
\mforall{}A:Type.  \mforall{}T:A  {}\mrightarrow{}  Type.
    ((A  \msubseteq{}r  Base)
    {}\mRightarrow{}  (\mforall{}a:A.  value-type(T[a]))
    {}\mRightarrow{}  (\mforall{}a:A.  mono(T[a]))
    {}\mRightarrow{}  (\mforall{}f:(a:A  {}\mrightarrow{}  partial(T[a]))  {}\mrightarrow{}  a:A  {}\mrightarrow{}  partial(T[a])  \mcap{}  Base.  (fix(f)  \mmember{}  a:A  {}\mrightarrow{}  partial(T[a]))))
Date html generated:
2017_04_14-AM-07_41_21
Last ObjectModification:
2017_02_27-PM-03_13_13
Theory : partial_1
Home
Index