Nuprl Lemma : per-function-ext

[A:Type]. ∀[B:per-function(A;x.Type)]. ∀[f,g:per-function(A;x.B[x])].
  g ∈ per-function(A;x.B[x]) supposing ∀[a:A]. ((f a) (g a) ∈ B[a])


Proof




Definitions occuring in Statement :  per-function: per-function(A;a.B[a]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] apply: a universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T type-function: type-function{i:l}(A) so_apply: x[s] uimplies: supposing a guard: {T} all: x:A. B[x] implies:  Q prop: pi2: snd(t) pi1: fst(t) top: Top so_lambda: λ2x.t[x] subtype_rel: A ⊆B cand: c∧ B and: P ∧ Q sq_type: SQType(T) per-function: per-function(A;a.B[a]) function-eq: function-eq(A;a.B[a];f;g) per-apply: per-apply(f;x) tf-apply: tf-apply(f;x) true: True label: ...$L... t squash: T rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  per-function_wf_type per-function-type-apply per-function_wf apply-wf-per istype-universe equal_wf base_wf top_wf subtype_rel_product pair-eta pi1_wf pi2_wf subtype_rel_self product_subtype_base subtype_base_sq uall_wf equal-wf-base type-function_wf true_wf squash_wf per-apply_wf type-function-eta tf-apply_wf istype-top istype-void member_wf equal-wf-T-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache sqequalRule Error :isectIsType,  Error :universeIsType,  Error :equalityIsType1,  hypothesis instantiate universeEquality independent_pairEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  pointwiseFunctionality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination productElimination productEquality baseClosed closedConclusion baseApply lambdaFormation voidEquality voidElimination isect_memberEquality independent_isectElimination lambdaEquality applyEquality independent_pairFormation applyLambdaEquality cumulativity axiomEquality pertypeMemberEquality imageMemberEquality natural_numberEquality imageElimination hyp_replacement Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  functionEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  Error :equalityIsType3,  setElimination rename isectEquality promote_hyp

Latex:
\mforall{}[A:Type].  \mforall{}[B:per-function(A;x.Type)].  \mforall{}[f,g:per-function(A;x.B[x])].
    f  =  g  supposing  \mforall{}[a:A].  ((f  a)  =  (g  a))



Date html generated: 2019_06_20-AM-11_30_08
Last ObjectModification: 2018_11_20-PM-03_20_21

Theory : per!type


Home Index