Nuprl Lemma : per-function-ext
∀[A:Type]. ∀[B:per-function(A;x.Type)]. ∀[f,g:per-function(A;x.B[x])].
  f = g ∈ per-function(A;x.B[x]) supposing ∀[a:A]. ((f a) = (g a) ∈ B[a])
Proof
Definitions occuring in Statement : 
per-function: per-function(A;a.B[a]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
apply: f a, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
type-function: type-function{i:l}(A), 
so_apply: x[s], 
uimplies: b supposing a, 
guard: {T}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
pi2: snd(t), 
pi1: fst(t), 
top: Top, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
cand: A c∧ B, 
and: P ∧ Q, 
sq_type: SQType(T), 
per-function: per-function(A;a.B[a]), 
function-eq: function-eq(A;a.B[a];f;g), 
per-apply: per-apply(f;x), 
tf-apply: tf-apply(f;x), 
true: True, 
label: ...$L... t, 
squash: ↓T, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q
Lemmas referenced : 
per-function_wf_type, 
per-function-type-apply, 
per-function_wf, 
apply-wf-per, 
istype-universe, 
equal_wf, 
base_wf, 
top_wf, 
subtype_rel_product, 
pair-eta, 
pi1_wf, 
pi2_wf, 
subtype_rel_self, 
product_subtype_base, 
subtype_base_sq, 
uall_wf, 
equal-wf-base, 
type-function_wf, 
true_wf, 
squash_wf, 
per-apply_wf, 
type-function-eta, 
tf-apply_wf, 
istype-top, 
istype-void, 
member_wf, 
equal-wf-T-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
sqequalRule, 
Error :isectIsType, 
Error :universeIsType, 
Error :equalityIsType1, 
hypothesis, 
instantiate, 
universeEquality, 
independent_pairEquality, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
productEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
lambdaFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
independent_isectElimination, 
lambdaEquality, 
applyEquality, 
independent_pairFormation, 
applyLambdaEquality, 
cumulativity, 
axiomEquality, 
pertypeMemberEquality, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
hyp_replacement, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
functionEquality, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
Error :equalityIsType3, 
setElimination, 
rename, 
isectEquality, 
promote_hyp
Latex:
\mforall{}[A:Type].  \mforall{}[B:per-function(A;x.Type)].  \mforall{}[f,g:per-function(A;x.B[x])].
    f  =  g  supposing  \mforall{}[a:A].  ((f  a)  =  (g  a))
Date html generated:
2019_06_20-AM-11_30_08
Last ObjectModification:
2018_11_20-PM-03_20_21
Theory : per!type
Home
Index