Nuprl Lemma : per-product-elim
∀[A:Type]. ∀[B:per-function(A;a.Type)]. ∀[p:per-product(A;a.B[a])].
  uand(p ~ <fst(p), snd(p)>uand(fst(p) ∈ A;snd(p) ∈ B[fst(p)]))
Proof
Definitions occuring in Statement : 
per-product: per-product(A;a.B[a])
, 
per-function: per-function(A;a.B[a])
, 
uand: uand(A;B)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
member: t ∈ T
, 
pair: <a, b>
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
type-function: type-function{i:l}(A)
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
per-product: per-product(A;a.B[a])
, 
uand: uand(A;B)
, 
has-value: (a)↓
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
label: ...$L... t
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
top: Top
Lemmas referenced : 
per-function_wf_type, 
per-function-type-apply, 
per-function_wf, 
per-product_wf, 
istype-universe, 
uand_wf, 
equal-wf-base, 
has-value_wf_base, 
is-exception_wf, 
ispair-implies-sq, 
istype-sqequal, 
apply_wf_type-function, 
equal_wf, 
member_wf, 
subtype_rel_self, 
iff_weakening_equal, 
istype-top, 
istype-void, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
sqequalRule, 
promote_hyp, 
Error :universeIsType, 
hypothesis, 
instantiate, 
universeEquality, 
pointwiseFunctionality, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
isectEquality, 
equalityTransitivity, 
equalitySymmetry, 
pertypeElimination, 
axiomSqleEquality, 
divergentSqle, 
sqleReflexivity, 
axiomSqEquality, 
independent_isectElimination, 
sqequalExtensionalEquality, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
imageMemberEquality, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
Error :inhabitedIsType, 
natural_numberEquality, 
productElimination, 
independent_functionElimination, 
rename, 
isaxiomCases, 
Error :isect_memberEquality_alt, 
voidElimination, 
axiomEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:per-function(A;a.Type)].  \mforall{}[p:per-product(A;a.B[a])].
    uand(p  \msim{}  <fst(p),  snd(p)>uand(fst(p)  \mmember{}  A;snd(p)  \mmember{}  B[fst(p)]))
Date html generated:
2019_06_20-AM-11_30_16
Last ObjectModification:
2018_11_23-PM-00_51_09
Theory : per!type
Home
Index