Nuprl Lemma : per-product-elim

[A:Type]. ∀[B:per-function(A;a.Type)]. ∀[p:per-product(A;a.B[a])].
  uand(p ~ <fst(p), snd(p)>;uand(fst(p) ∈ A;snd(p) ∈ B[fst(p)]))


Proof




Definitions occuring in Statement :  per-product: per-product(A;a.B[a]) per-function: per-function(A;a.B[a]) uand: uand(A;B) uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) pi2: snd(t) member: t ∈ T pair: <a, b> universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T type-function: type-function{i:l}(A) prop: uimplies: supposing a so_apply: x[s] per-product: per-product(A;a.B[a]) uand: uand(A;B) has-value: (a)↓ iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q squash: T label: ...$L... t true: True subtype_rel: A ⊆B guard: {T} top: Top
Lemmas referenced :  per-function_wf_type per-function-type-apply per-function_wf per-product_wf istype-universe uand_wf equal-wf-base has-value_wf_base is-exception_wf ispair-implies-sq istype-sqequal apply_wf_type-function equal_wf member_wf subtype_rel_self iff_weakening_equal istype-top istype-void base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache sqequalRule promote_hyp Error :universeIsType,  hypothesis instantiate universeEquality pointwiseFunctionality sqequalIntensionalEquality baseApply closedConclusion baseClosed isectEquality equalityTransitivity equalitySymmetry pertypeElimination axiomSqleEquality divergentSqle sqleReflexivity axiomSqEquality independent_isectElimination sqequalExtensionalEquality independent_pairFormation Error :lambdaFormation_alt,  imageMemberEquality applyEquality Error :lambdaEquality_alt,  imageElimination Error :inhabitedIsType,  natural_numberEquality productElimination independent_functionElimination rename isaxiomCases Error :isect_memberEquality_alt,  voidElimination axiomEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:per-function(A;a.Type)].  \mforall{}[p:per-product(A;a.B[a])].
    uand(p  \msim{}  <fst(p),  snd(p)>uand(fst(p)  \mmember{}  A;snd(p)  \mmember{}  B[fst(p)]))



Date html generated: 2019_06_20-AM-11_30_16
Last ObjectModification: 2018_11_23-PM-00_51_09

Theory : per!type


Home Index