Nuprl Lemma : term-accum_wf

[opr,P:Type]. ∀[R:P ⟶ term(opr) ⟶ ℙ]. ∀[Q:P ⟶ opr ⟶ (varname() List) ⟶ ((t:term(opr) × p:P × R[p;t]) List) ⟶ P].
[varcase:p:P ⟶ v:{v:varname()| ¬(v nullvar() ∈ varname())}  ⟶ R[p;varterm(v)]].
[mktermcase:p:P
             ⟶ f:opr
             ⟶ bts:(bound-term(opr) List)
             ⟶ L:{L:(t:term(opr) × p:P × R[p;t]) List| 
                   (||L|| ||bts|| ∈ ℤ)
                   ∧ (∀i:ℕ||L||. ((fst(L[i])) (snd(bts[i])) ∈ term(opr)))
                   ∧ (∀i:ℕ||L||. ((fst(snd(L[i]))) Q[p;f;fst(bts[i]);firstn(i;L)] ∈ P))} 
             ⟶ R[p;mkterm(f;bts)]]. ∀[t:term(opr)]. ∀[p:P].
  (term-accum(t with p)
   p,f,vs,tr.Q[p;f;vs;tr]
   varterm(x) with  varcase[p;x]
   mkterm(f,bts) with  trs.mktermcase[p;f;bts;trs] ∈ R[p;t])


Proof




Definitions occuring in Statement :  term-accum: term-accum bound-term: bound-term(opr) mkterm: mkterm(opr;bts) varterm: varterm(v) term: term(opr) nullvar: nullvar() varname: varname() firstn: firstn(n;as) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3;s4] so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) all: x:A. B[x] not: ¬A and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s1;s2] all: x:A. B[x] so_apply: x[s1;s2;s3;s4] and: P ∧ Q term-accum: term-accum subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: pi1: fst(t) bound-term: bound-term(opr) pi2: snd(t)
Lemmas referenced :  term-accum1_wf term_wf list_wf bound-term_wf istype-int length_wf_nat set_subtype_base le_wf int_subtype_base int_seg_wf length_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma pi1_wf firstn_wf mkterm_wf varname_wf nullvar_wf istype-void varterm_wf subtype_rel_self istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule applyEquality axiomEquality equalityTransitivity equalitySymmetry universeIsType functionIsType setIsType productEquality because_Cache productIsType equalityIstype intEquality lambdaEquality_alt natural_numberEquality independent_isectElimination sqequalBase setElimination rename productElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination inhabitedIsType lambdaFormation_alt instantiate universeEquality

Latex:
\mforall{}[opr,P:Type].  \mforall{}[R:P  {}\mrightarrow{}  term(opr)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Q:P
                                                                                          {}\mrightarrow{}  opr
                                                                                          {}\mrightarrow{}  (varname()  List)
                                                                                          {}\mrightarrow{}  ((t:term(opr)  \mtimes{}  p:P  \mtimes{}  R[p;t])  List)
                                                                                          {}\mrightarrow{}  P].  \mforall{}[varcase:p:P
                                                                                                                            {}\mrightarrow{}  v:\{v:varname()|  \mneg{}(v  =  nullvar())\} 
                                                                                                                            {}\mrightarrow{}  R[p;varterm(v)]].
\mforall{}[mktermcase:p:P
                          {}\mrightarrow{}  f:opr
                          {}\mrightarrow{}  bts:(bound-term(opr)  List)
                          {}\mrightarrow{}  L:\{L:(t:term(opr)  \mtimes{}  p:P  \mtimes{}  R[p;t])  List| 
                                      (||L||  =  ||bts||)
                                      \mwedge{}  (\mforall{}i:\mBbbN{}||L||.  ((fst(L[i]))  =  (snd(bts[i]))))
                                      \mwedge{}  (\mforall{}i:\mBbbN{}||L||.  ((fst(snd(L[i])))  =  Q[p;f;fst(bts[i]);firstn(i;L)]))\} 
                          {}\mrightarrow{}  R[p;mkterm(f;bts)]].  \mforall{}[t:term(opr)].  \mforall{}[p:P].
    (term-accum(t  with  p)
      p,f,vs,tr.Q[p;f;vs;tr]
      varterm(x)  with  p  {}\mRightarrow{}  varcase[p;x]
      mkterm(f,bts)  with  p  {}\mRightarrow{}  trs.mktermcase[p;f;bts;trs]  \mmember{}  R[p;t])



Date html generated: 2020_05_19-PM-09_55_14
Last ObjectModification: 2020_03_09-PM-04_08_45

Theory : terms


Home Index