Nuprl Lemma : tuple-equiv-is-equiv
∀L:(X:Type × (X ⟶ X ⟶ ℙ)) List
  ((∀i:ℕ||L||. let X,E = L[i] in EquivRel(X;x,y.E x y))
  
⇒ EquivRel(tuple-type(map(λp.(fst(p));L));t,t'.tuple-equiv(L) t t'))
Proof
Definitions occuring in Statement : 
tuple-equiv: tuple-equiv(L)
, 
tuple-type: tuple-type(L)
, 
select: L[n]
, 
length: ||as||
, 
map: map(f;as)
, 
list: T List
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
spread: spread def, 
product: x:A × B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
tuple-equiv: tuple-equiv(L)
, 
let: let, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
subtype_rel: A ⊆r B
, 
trans: Trans(T;x,y.E[x; y])
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
less_than': less_than'(a;b)
, 
label: ...$L... t
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
tuple-type_wf, 
map_wf, 
pi1_wf, 
istype-universe, 
tuple-equiv_wf, 
subtype_rel_self, 
int_seg_wf, 
length_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
equiv_rel_wf, 
list_wf, 
select-tuple_wf, 
int_seg_subtype_nat, 
istype-false, 
map-length, 
equal_wf, 
squash_wf, 
true_wf, 
length-map-sq, 
subtype_rel_list, 
top_wf, 
iff_weakening_equal, 
select-map, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
sqequalRule, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
productEquality, 
universeEquality, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
Error :lambdaEquality_alt, 
hypothesis, 
Error :productIsType, 
Error :functionIsType, 
Error :inhabitedIsType, 
applyEquality, 
because_Cache, 
natural_numberEquality, 
closedConclusion, 
setElimination, 
rename, 
independent_isectElimination, 
productElimination, 
imageElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}L:(X:Type  \mtimes{}  (X  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}))  List
    ((\mforall{}i:\mBbbN{}||L||.  let  X,E  =  L[i]  in  EquivRel(X;x,y.E  x  y))
    {}\mRightarrow{}  EquivRel(tuple-type(map(\mlambda{}p.(fst(p));L));t,t'.tuple-equiv(L)  t  t'))
Date html generated:
2019_06_20-PM-02_16_41
Last ObjectModification:
2019_03_18-PM-04_19_42
Theory : tuples
Home
Index