Nuprl Lemma : tuple-equiv-is-equiv

L:(X:Type × (X ⟶ X ⟶ ℙ)) List
  ((∀i:ℕ||L||. let X,E L[i] in EquivRel(X;x,y.E y))
   EquivRel(tuple-type(map(λp.(fst(p));L));t,t'.tuple-equiv(L) t'))


Proof




Definitions occuring in Statement :  tuple-equiv: tuple-equiv(L) tuple-type: tuple-type(L) select: L[n] length: ||as|| map: map(f;as) list: List equiv_rel: EquivRel(T;x,y.E[x; y]) int_seg: {i..j-} prop: pi1: fst(t) all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] spread: spread def product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) tuple-equiv: tuple-equiv(L) let: let member: t ∈ T uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B sym: Sym(T;x,y.E[x; y]) subtype_rel: A ⊆B trans: Trans(T;x,y.E[x; y]) int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] pi2: snd(t) pi1: fst(t) less_than': less_than'(a;b) label: ...$L... t true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  tuple-type_wf map_wf pi1_wf istype-universe tuple-equiv_wf subtype_rel_self int_seg_wf length_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma equiv_rel_wf list_wf select-tuple_wf int_seg_subtype_nat istype-false map-length equal_wf squash_wf true_wf length-map-sq subtype_rel_list top_wf iff_weakening_equal select-map subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  independent_pairFormation sqequalRule Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin instantiate productEquality universeEquality functionEquality cumulativity hypothesisEquality Error :lambdaEquality_alt,  hypothesis Error :productIsType,  Error :functionIsType,  Error :inhabitedIsType,  applyEquality because_Cache natural_numberEquality closedConclusion setElimination rename independent_isectElimination productElimination imageElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :equalityIstype,  equalityTransitivity equalitySymmetry intEquality imageMemberEquality baseClosed

Latex:
\mforall{}L:(X:Type  \mtimes{}  (X  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}))  List
    ((\mforall{}i:\mBbbN{}||L||.  let  X,E  =  L[i]  in  EquivRel(X;x,y.E  x  y))
    {}\mRightarrow{}  EquivRel(tuple-type(map(\mlambda{}p.(fst(p));L));t,t'.tuple-equiv(L)  t  t'))



Date html generated: 2019_06_20-PM-02_16_41
Last ObjectModification: 2019_03_18-PM-04_19_42

Theory : tuples


Home Index