Nuprl Lemma : tuple-equiv_wf

[L:(X:Type × (X ⟶ X ⟶ ℙ)) List]
  (tuple-equiv(L) ∈ tuple-type(map(λp.(fst(p));L)) ⟶ tuple-type(map(λp.(fst(p));L)) ⟶ ℙ)


Proof




Definitions occuring in Statement :  tuple-equiv: tuple-equiv(L) tuple-type: tuple-type(L) map: map(f;as) list: List uall: [x:A]. B[x] prop: pi1: fst(t) member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tuple-equiv: tuple-equiv(L) let: let prop: so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q pi1: fst(t) pi2: snd(t) subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A cand: c∧ B top: Top int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] label: ...$L... t true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q select: L[n] so_apply: x[s]
Lemmas referenced :  all_wf int_seg_wf length_wf select-tuple_wf map_wf istype-universe int_seg_subtype_nat istype-false map-length istype-void int_seg_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf equal_wf squash_wf true_wf length-map-sq subtype_rel_list top_wf iff_weakening_equal subtype_rel_self select-map tuple-type_wf pi1_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule Error :lambdaEquality_alt,  extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion natural_numberEquality instantiate productEquality universeEquality functionEquality cumulativity hypothesisEquality hypothesis applyEquality because_Cache Error :inhabitedIsType,  Error :lambdaFormation_alt,  productElimination Error :equalityIstype,  equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination Error :productIsType,  Error :functionIsType,  Error :universeIsType,  independent_isectElimination independent_pairFormation Error :isect_memberEquality_alt,  voidElimination setElimination rename imageElimination unionElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality intEquality imageMemberEquality baseClosed axiomEquality

Latex:
\mforall{}[L:(X:Type  \mtimes{}  (X  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}))  List]
    (tuple-equiv(L)  \mmember{}  tuple-type(map(\mlambda{}p.(fst(p));L))  {}\mrightarrow{}  tuple-type(map(\mlambda{}p.(fst(p));L))  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2019_06_20-PM-02_16_35
Last ObjectModification: 2019_03_18-PM-04_05_25

Theory : tuples


Home Index