Nuprl Lemma : bag-eq-subtype1
∀[A:Type]. ∀[B:A ⟶ ℙ]. ∀[d1,d2:bag({a:A| B[a]} )].  d1 = d2 ∈ bag({a:A| B[a]} ) supposing d1 = d2 ∈ bag(A)
Proof
Definitions occuring in Statement : 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
equal_wf, 
bag_wf, 
subtype_rel_bag, 
bag_to_squash_list, 
equal_functionality_wrt_subtype_rel2, 
subtype_rel_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
list-subtype-bag, 
subtype_rel_self, 
permutation-strong-subtype, 
strong-subtype-set2, 
quotient-member-eq, 
list_wf, 
permutation_wf, 
permutation-equiv, 
member_wf, 
subtype_rel_list
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
setEquality, 
functionExtensionality, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
functionEquality, 
isect_memberFormation, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
productElimination, 
lambdaFormation, 
independent_functionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality, 
pertypeElimination, 
productEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d1,d2:bag(\{a:A|  B[a]\}  )].    d1  =  d2  supposing  d1  =  d2
Date html generated:
2017_10_01-AM-08_57_42
Last ObjectModification:
2017_07_26-PM-04_39_47
Theory : bags
Home
Index