Nuprl Lemma : bag-filter-equal

[T:Type]. ∀[p1,p2:T ⟶ 𝔹]. ∀[b:bag(T)].  uiff([x∈b|p1[x]] [x∈b|p2[x]] ∈ bag(T);∀x:T. (x ↓∈  (↑p1[x] ⇐⇒ ↑p2[x])))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-filter: [x∈b|p[x]] bag: bag(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T all: x:A. B[x] implies:  Q prop: uall: [x:A]. B[x] iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B cand: c∧ B squash: T exists: x:A. B[x] bag-filter: [x∈b|p[x]] sq_stable: SqStable(P)
Lemmas referenced :  bag-member_wf assert_witness equal_wf bag_wf bag-filter_wf subtype_rel_bag assert_wf all_wf iff_wf bool_wf bag-member-filter bag_to_squash_list filter-sq l_member_wf sq_stable_from_decidable decidable__assert list-member-bag-member set_wf filter_wf5 list-subtype-bag
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality because_Cache independent_functionElimination applyEquality functionExtensionality setEquality independent_isectElimination setElimination rename functionEquality universeEquality isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality hyp_replacement Error :applyLambdaEquality,  imageElimination promote_hyp imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[p1,p2:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[b:bag(T)].
    uiff([x\mmember{}b|p1[x]]  =  [x\mmember{}b|p2[x]];\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (\muparrow{}p1[x]  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}p2[x])))



Date html generated: 2016_10_25-AM-10_30_19
Last ObjectModification: 2016_07_12-AM-06_46_49

Theory : bags


Home Index