Nuprl Lemma : bag-filter-equal
∀[T:Type]. ∀[p1,p2:T ⟶ 𝔹]. ∀[b:bag(T)].  uiff([x∈b|p1[x]] = [x∈b|p2[x]] ∈ bag(T);∀x:T. (x ↓∈ b 
⇒ (↑p1[x] 
⇐⇒ ↑p2[x])))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-filter: [x∈b|p[x]]
, 
bag: bag(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
bag-filter: [x∈b|p[x]]
, 
sq_stable: SqStable(P)
Lemmas referenced : 
bag-member_wf, 
assert_witness, 
equal_wf, 
bag_wf, 
bag-filter_wf, 
subtype_rel_bag, 
assert_wf, 
all_wf, 
iff_wf, 
bool_wf, 
bag-member-filter, 
bag_to_squash_list, 
filter-sq, 
l_member_wf, 
sq_stable_from_decidable, 
decidable__assert, 
list-member-bag-member, 
set_wf, 
filter_wf5, 
list-subtype-bag
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
because_Cache, 
independent_functionElimination, 
applyEquality, 
functionExtensionality, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
functionEquality, 
universeEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
imageElimination, 
promote_hyp, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[p1,p2:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[b:bag(T)].
    uiff([x\mmember{}b|p1[x]]  =  [x\mmember{}b|p2[x]];\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (\muparrow{}p1[x]  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}p2[x])))
Date html generated:
2016_10_25-AM-10_30_19
Last ObjectModification:
2016_07_12-AM-06_46_49
Theory : bags
Home
Index