Nuprl Lemma : bag-val_wf
∀[T:Type]. ∀[+:T ⟶ T ⟶ T]. ∀[zero:T].  (Comm(T;+) ⇒ Assoc(T;+) ⇒ Ident(T;+;zero) ⇒ (bag-val(zero;+) ∈ bag(T) ⟶ T))
Proof
Definitions occuring in Statement : 
bag-val: bag-val(zero;+), 
bag: bag(T), 
comm: Comm(T;op), 
assoc: Assoc(T;op), 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type, 
ident: Ident(T;op;id)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
bag-val: bag-val(zero;+), 
prop: ℙ, 
bag: bag(T), 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
decidable: Dec(P), 
or: P ∨ Q, 
so_lambda: λ2x y.t[x; y], 
infix_ap: x f y, 
so_apply: x[s1;s2], 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
length: ||as||, 
list_ind: list_ind, 
nil: [], 
it: ⋅, 
false: False, 
cons: [a / b], 
combine-list: combine-list(x,y.f[x; y];L), 
top: Top, 
guard: {T}, 
true: True, 
ident: Ident(T;op;id), 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
assoc: Assoc(T;op), 
comm: Comm(T;op), 
le: A ≤ B
Lemmas referenced : 
bag_wf, 
ident_wf, 
assoc_wf, 
comm_wf, 
list_wf, 
permutation-length, 
decidable__lt, 
permutation_wf, 
equal_wf, 
equal-wf-base, 
list_accum_wf, 
list-cases, 
product_subtype_list, 
list_accum_cons_lemma, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
infix_ap_wf, 
squash_wf, 
true_wf, 
combine-list_wf, 
length_of_nil_lemma, 
non_neg_length, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
combine-list-permutation, 
nil_wf, 
length_of_cons_lemma, 
intformle_wf, 
itermAdd_wf, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
intformnot_wf, 
int_formula_prop_not_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
rename, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
independent_functionElimination, 
productEquality, 
hyp_replacement, 
applyLambdaEquality, 
imageElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}[T:Type].  \mforall{}[+:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[zero:T].
    (Comm(T;+)  {}\mRightarrow{}  Assoc(T;+)  {}\mRightarrow{}  Ident(T;+;zero)  {}\mRightarrow{}  (bag-val(zero;+)  \mmember{}  bag(T)  {}\mrightarrow{}  T))
Date html generated:
2017_10_01-AM-08_46_16
Last ObjectModification:
2017_07_26-PM-04_31_12
Theory : bags
Home
Index