Nuprl Lemma : concat-lifting-3_wf

[A,B,C,D:Type]. ∀[f:A ⟶ B ⟶ C ⟶ bag(D)].  (concat-lifting-3(f) ∈ bag(A) ⟶ bag(B) ⟶ bag(C) ⟶ bag(D))


Proof




Definitions occuring in Statement :  concat-lifting-3: concat-lifting-3(f) bag: bag(T) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T concat-lifting-3: concat-lifting-3(f) nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top sq_type: SQType(T) select: L[n] cons: [a b] subtract: m funtype: funtype(n;A;T) eq_int: (i =z j) ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  bag_wf primrec1_lemma primrec-unroll int_seg_cases int_seg_subtype int_subtype_base subtype_base_sq decidable__equal_int int_seg_wf int_term_value_add_lemma int_formula_prop_less_lemma itermAdd_wf intformless_wf decidable__lt length_of_nil_lemma length_of_cons_lemma int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties nil_wf cons_wf select_wf le_wf false_wf concat-lifting_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesis instantiate universeEquality because_Cache setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll addEquality cumulativity independent_functionElimination equalityTransitivity equalitySymmetry hypothesis_subsumption axiomEquality functionEquality

Latex:
\mforall{}[A,B,C,D:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C  {}\mrightarrow{}  bag(D)].
    (concat-lifting-3(f)  \mmember{}  bag(A)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(C)  {}\mrightarrow{}  bag(D))



Date html generated: 2016_05_15-PM-03_08_29
Last ObjectModification: 2016_01_16-AM-08_34_37

Theory : bags


Home Index