Nuprl Lemma : monad-from_wf

[Mnd:Monad]. (monad-from(Mnd) ∈ Monad(TypeCat))


Proof




Definitions occuring in Statement :  monad-from: monad-from(Mnd) monad: Monad cat-monad: Monad(C) type-cat: TypeCat uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B implies:  Q monad-from: monad-from(Mnd) uimplies: supposing a type-cat: TypeCat top: Top so_lambda: so_lambda3 so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] compose: g cat-ob: cat-ob(C) pi1: fst(t) cat-arrow: cat-arrow(C) pi2: snd(t) squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q M-return: M-return(Mnd) id_functor: 1 nat-trans: nat-trans(C;D;F;G) functor-comp: functor-comp(F;G)
Lemmas referenced :  M-map_wf M-bind_wf istype-universe mk-monad_wf cat_ob_pair_lemma istype-void cat_arrow_triple_lemma ob_mk_functor_lemma cat_comp_tuple_lemma arrow_mk_functor_lemma cat_id_tuple_lemma monad_wf type-cat_wf subtype_rel_self cat-ob_wf cat-arrow_wf mk-functor_wf M-return_wf equal_wf squash_wf true_wf trivial-equal M-associative iff_weakening_equal M-leftunit M-rightunit eta_conv compose_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut lambdaEquality_alt lambdaFormation_alt applyEquality hypothesisEquality universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis functionIsType inhabitedIsType because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry equalityIsType1 independent_functionElimination sqequalRule instantiate universeEquality independent_isectElimination isect_memberEquality_alt voidElimination functionExtensionality functionEquality imageElimination natural_numberEquality imageMemberEquality baseClosed productElimination hyp_replacement applyLambdaEquality dependent_set_memberEquality_alt cumulativity lambdaFormation isectEquality lambdaEquality

Latex:
\mforall{}[Mnd:Monad].  (monad-from(Mnd)  \mmember{}  Monad(TypeCat))



Date html generated: 2020_05_20-AM-08_04_16
Last ObjectModification: 2020_01_16-PM-05_25_21

Theory : bags


Home Index