Nuprl Lemma : null-bag-filter-map

[T,A:Type]. ∀[f:A ⟶ T]. ∀[p:T ⟶ 𝔹]. ∀[as:bag(A)].  null([x∈bag-map(f;as)|p[x]]) null([x∈as|p[f x]])


Proof




Definitions occuring in Statement :  bag-filter: [x∈b|p[x]] bag-map: bag-map(f;bs) bag: bag(T) null: null(as) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-filter: [x∈b|p[x]] bag-map: bag-map(f;bs) bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q so_apply: x[s] compose: g top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a prop: bag-null: bag-null(bs) so_lambda: λ2x.t[x] subtype_rel: A ⊆B
Lemmas referenced :  bool_wf list_wf filter_map null-map quotient-member-eq permutation_wf permutation-equiv null_wf filter_wf5 l_member_wf equal_wf equal-wf-base bag_wf bag-null_wf assert_wf bag-filter_wf list-subtype-bag
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid hypothesis sqequalRule pertypeElimination productElimination thin equalityTransitivity equalitySymmetry isectElimination cumulativity hypothesisEquality lambdaFormation because_Cache rename lambdaEquality applyEquality functionExtensionality isect_memberEquality voidElimination voidEquality independent_isectElimination dependent_functionElimination independent_functionElimination setElimination setEquality hyp_replacement applyLambdaEquality productEquality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  T].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[as:bag(A)].
    null([x\mmember{}bag-map(f;as)|p[x]])  =  null([x\mmember{}as|p[f  x]])



Date html generated: 2017_10_01-AM-08_45_43
Last ObjectModification: 2017_07_26-PM-04_30_53

Theory : bags


Home Index