Nuprl Lemma : bag-remove1-member

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)].  (bag-remove1(eq;{x} bs;x) (inl bs) ∈ (bag(T)?))


Proof




Definitions occuring in Statement :  bag-remove1: bag-remove1(eq;bs;a) bag-append: as bs single-bag: {x} bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] unit: Unit inl: inl x union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] or: P ∨ Q bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q exists: x:A. B[x] prop: not: ¬A implies:  Q false: False subtype_rel: A ⊆B uimplies: supposing a uiff: uiff(P;Q) label: ...$L... t guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_or: a ↓∨ b squash: T
Lemmas referenced :  bag-remove1-property bag-append_wf single-bag_wf bag_wf unit_wf2 list_wf permutation_wf istype-universe deq_wf bag-append-cancel list-subtype-bag subtype_rel_self bag-member-append bag-member-single bag-member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis unionElimination pointwiseFunctionalityForEquality unionEquality sqequalRule pertypeElimination productElimination productIsType equalityIsType4 universeIsType because_Cache inhabitedIsType equalityTransitivity equalitySymmetry independent_functionElimination voidElimination isect_memberEquality_alt axiomEquality universeEquality inlEquality_alt applyEquality independent_isectElimination lambdaEquality_alt inlFormation_alt imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].    (bag-remove1(eq;\{x\}  +  bs;x)  =  (inl  bs))



Date html generated: 2019_10_16-AM-11_30_52
Last ObjectModification: 2018_10_11-AM-10_03_28

Theory : bags_2


Home Index