Nuprl Lemma : bar-recursion_wf

[T:Type]. ∀[R,A:(T List) ⟶ ℙ]. ∀[d:∀s:T List. Dec(R[s])]. ∀[b:∀s:T List. (R[s]  A[s])]. ∀[i:∀s:T List
                                                                                                  ((∀t:T. A[s [t]])
                                                                                                   A[s])].
[s:T List].
  ((∀alpha:ℕ ⟶ T. (↓∃n:ℕR[s map(alpha;upto(n))]))  (bar-recursion(d;b;i;s) ∈ A[s]))


Proof




Definitions occuring in Statement :  bar-recursion: bar-recursion upto: upto(n) map: map(f;as) append: as bs cons: [a b] nil: [] list: List nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A all: x:A. B[x] exists: x:A. B[x] top: Top decidable: Dec(P) bar-recursion: bar-recursion or: P ∨ Q
Lemmas referenced :  all_wf nat_wf squash_wf exists_wf append_wf map_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf upto_wf list_wf cons_wf nil_wf decidable_wf subtype_rel_list top_wf append-nil equal_wf append_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution hypothesis lemma_by_obid isectElimination thin functionEquality cumulativity hypothesisEquality sqequalRule lambdaEquality because_Cache applyEquality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality voidElimination voidEquality barInduction unionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R,A:(T  List)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d:\mforall{}s:T  List.  Dec(R[s])].  \mforall{}[b:\mforall{}s:T  List.  (R[s]  {}\mRightarrow{}  A[s])].
\mforall{}[i:\mforall{}s:T  List.  ((\mforall{}t:T.  A[s  @  [t]])  {}\mRightarrow{}  A[s])].  \mforall{}[s:T  List].
    ((\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  T.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  R[s  @  map(alpha;upto(n))]))  {}\mRightarrow{}  (bar-recursion(d;b;i;s)  \mmember{}  A[s]))



Date html generated: 2016_05_15-PM-10_05_00
Last ObjectModification: 2015_12_27-PM-05_51_05

Theory : bar!induction


Home Index