Nuprl Lemma : fan-realizer_test2

m:ℕ. ∃k:ℕ. ∀f:ℕ ⟶ 𝔹. ∃n:ℕk. ((λl.(m ≤ ||l||)) map(f;upto(n)))


Proof




Definitions occuring in Statement :  upto: upto(n) length: ||as|| map: map(f;as) int_seg: {i..j-} nat: bool: 𝔹 le: A ≤ B all: x:A. B[x] exists: x:A. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] nat: implies:  Q tbar: tbar(T;X) exists: x:A. B[x] squash: T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top dec-predicate: Decidable(X)
Lemmas referenced :  map_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermVar_wf intformle_wf intformnot_wf satisfiable-full-omega-tt decidable__le nat_properties length_upto iff_weakening_equal upto_wf subtype_rel_self false_wf int_seg_subtype_nat subtype_rel_dep_function int_seg_wf map_length_nat true_wf squash_wf list_wf bool_wf length_wf le_wf nat_wf fan-realizer_wf
Rules used in proof :  cut lemma_by_obid introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalHypSubstitution equalityTransitivity hypothesis equalitySymmetry lambdaFormation isectElimination thin lambdaEquality setElimination rename hypothesisEquality independent_functionElimination sqequalRule dependent_pairFormation applyEquality imageElimination intEquality natural_numberEquality independent_isectElimination independent_pairFormation because_Cache imageMemberEquality baseClosed universeEquality productElimination dependent_functionElimination unionElimination int_eqEquality isect_memberEquality voidElimination voidEquality computeAll functionEquality

Latex:
\mforall{}m:\mBbbN{}.  \mexists{}k:\mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  ((\mlambda{}l.(m  \mleq{}  ||l||))  map(f;upto(n)))



Date html generated: 2016_05_15-PM-10_05_29
Last ObjectModification: 2016_01_16-PM-04_05_33

Theory : bar!induction


Home Index