Nuprl Lemma : fan-realizer_test2
∀m:ℕ. ∃k:ℕ. ∀f:ℕ ⟶ 𝔹. ∃n:ℕk. ((λl.(m ≤ ||l||)) map(f;upto(n)))
Proof
Definitions occuring in Statement : 
upto: upto(n)
, 
length: ||as||
, 
map: map(f;as)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
tbar: tbar(T;X)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
dec-predicate: Decidable(X)
Lemmas referenced : 
map_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
length_upto, 
iff_weakening_equal, 
upto_wf, 
subtype_rel_self, 
false_wf, 
int_seg_subtype_nat, 
subtype_rel_dep_function, 
int_seg_wf, 
map_length_nat, 
true_wf, 
squash_wf, 
list_wf, 
bool_wf, 
length_wf, 
le_wf, 
nat_wf, 
fan-realizer_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalHypSubstitution, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
lambdaFormation, 
isectElimination, 
thin, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
dependent_pairFormation, 
applyEquality, 
imageElimination, 
intEquality, 
natural_numberEquality, 
independent_isectElimination, 
independent_pairFormation, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
functionEquality
Latex:
\mforall{}m:\mBbbN{}.  \mexists{}k:\mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  ((\mlambda{}l.(m  \mleq{}  ||l||))  map(f;upto(n)))
Date html generated:
2016_05_15-PM-10_05_29
Last ObjectModification:
2016_01_16-PM-04_05_33
Theory : bar!induction
Home
Index