Nuprl Lemma : compact-type-corec-lemma1
∀[F:Type ⟶ Type]
  (Monotone(T.F T)
  ⇒ (((⋂n:ℕ. (F^n Top)) ⟶ 𝔹) ⊆r ⋃n:ℕ.((F^n Top) ⟶ 𝔹))
  ⇒ (∀[T:Type]. (compact-type2(T) ⇒ compact-type2(F T)))
  ⇒ compact-type2(corec(T.F T)))
Proof
Definitions occuring in Statement : 
compact-type2: compact-type2(T), 
corec: corec(T.F[T]), 
type-monotone: Monotone(T.F[T]), 
fun_exp: f^n, 
nat: ℕ, 
bool: 𝔹, 
subtype_rel: A ⊆r B, 
tunion: ⋃x:A.B[x], 
uall: ∀[x:A]. B[x], 
top: Top, 
implies: P ⇒ Q, 
apply: f a, 
isect: ⋂x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
compact-type2: compact-type2(T), 
sq_exists: ∃x:{A| B[x]}, 
p-selector: p-selector(T;x;p), 
squash: ↓T, 
true: True, 
nat_plus: ℕ+
Lemmas referenced : 
compact-type-corec-lemma0, 
uall_wf, 
compact-type2_wf, 
subtype_rel_wf, 
nat_wf, 
fun_exp_wf, 
top_wf, 
bool_wf, 
tunion_wf, 
type-monotone_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
fun_exp0_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
void_wf, 
exists_wf, 
equal-wf-T-base, 
p-selector_wf, 
equal_wf, 
squash_wf, 
true_wf, 
fun_exp_unroll_1, 
le_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
independent_functionElimination, 
rename, 
instantiate, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
functionEquality, 
applyEquality, 
functionExtensionality, 
isectEquality, 
because_Cache, 
isect_memberEquality, 
setElimination, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
dependent_set_memberEquality, 
productElimination, 
baseClosed, 
addLevel, 
hyp_replacement, 
imageElimination, 
equalityUniverse, 
levelHypothesis, 
imageMemberEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    (Monotone(T.F  T)
    {}\mRightarrow{}  (((\mcap{}n:\mBbbN{}.  (F\^{}n  Top))  {}\mrightarrow{}  \mBbbB{})  \msubseteq{}r  \mcup{}n:\mBbbN{}.((F\^{}n  Top)  {}\mrightarrow{}  \mBbbB{}))
    {}\mRightarrow{}  (\mforall{}[T:Type].  (compact-type2(T)  {}\mRightarrow{}  compact-type2(F  T)))
    {}\mRightarrow{}  compact-type2(corec(T.F  T)))
 Date html generated: 
2016_10_25-AM-10_14_00
 Last ObjectModification: 
2016_07_12-AM-06_24_28
Theory : basic
Home
Index