Nuprl Lemma : compact-type-corec-lemma1

[F:Type ⟶ Type]
  (Monotone(T.F T)
   (((⋂n:ℕ(F^n Top)) ⟶ 𝔹) ⊆r ⋃n:ℕ.((F^n Top) ⟶ 𝔹))
   (∀[T:Type]. (compact-type2(T)  compact-type2(F T)))
   compact-type2(corec(T.F T)))


Proof




Definitions occuring in Statement :  compact-type2: compact-type2(T) corec: corec(T.F[T]) type-monotone: Monotone(T.F[T]) fun_exp: f^n nat: bool: 𝔹 subtype_rel: A ⊆B tunion: x:A.B[x] uall: [x:A]. B[x] top: Top implies:  Q apply: a isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat: false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q decidable: Dec(P) or: P ∨ Q compact-type2: compact-type2(T) sq_exists: x:{A| B[x]} p-selector: p-selector(T;x;p) squash: T true: True nat_plus: +
Lemmas referenced :  compact-type-corec-lemma0 uall_wf compact-type2_wf subtype_rel_wf nat_wf fun_exp_wf top_wf bool_wf tunion_wf type-monotone_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf fun_exp0_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma void_wf exists_wf equal-wf-T-base p-selector_wf equal_wf squash_wf true_wf fun_exp_unroll_1 le_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination rename instantiate universeEquality sqequalRule lambdaEquality cumulativity functionEquality applyEquality functionExtensionality isectEquality because_Cache isect_memberEquality setElimination intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry unionElimination dependent_set_memberEquality productElimination baseClosed addLevel hyp_replacement imageElimination equalityUniverse levelHypothesis imageMemberEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    (Monotone(T.F  T)
    {}\mRightarrow{}  (((\mcap{}n:\mBbbN{}.  (F\^{}n  Top))  {}\mrightarrow{}  \mBbbB{})  \msubseteq{}r  \mcup{}n:\mBbbN{}.((F\^{}n  Top)  {}\mrightarrow{}  \mBbbB{}))
    {}\mRightarrow{}  (\mforall{}[T:Type].  (compact-type2(T)  {}\mRightarrow{}  compact-type2(F  T)))
    {}\mRightarrow{}  compact-type2(corec(T.F  T)))



Date html generated: 2016_10_25-AM-10_14_00
Last ObjectModification: 2016_07_12-AM-06_24_28

Theory : basic


Home Index