Nuprl Lemma : compact-type-corec-lemma0

[F:Type ⟶ Type]
  (Monotone(T.F T)
   (((⋂n:ℕ(F^n Top)) ⟶ 𝔹) ⊆r ⋃n:ℕ.((F^n Top) ⟶ 𝔹))
   ((⋂n:ℕcompact-type2(F^n Top)) ⊆compact-type2(corec(T.F T))))


Proof




Definitions occuring in Statement :  compact-type2: compact-type2(T) corec: corec(T.F[T]) type-monotone: Monotone(T.F[T]) fun_exp: f^n nat: bool: 𝔹 subtype_rel: A ⊆B tunion: x:A.B[x] uall: [x:A]. B[x] top: Top implies:  Q apply: a isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] corec: corec(T.F[T]) rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B true: True squash: T compose: g assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 or: P ∨ Q decidable: Dec(P) prop: and: P ∧ Q top: Top not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False nat: member: t ∈ T all: x:A. B[x] implies:  Q uall: [x:A]. B[x] compact-type2: compact-type2(T) sq_exists: x:A [B[x]] tunion: x:A.B[x] pi2: snd(t) p-selector: p-selector(T;x;p)
Lemmas referenced :  type-monotone_wf subtype_rel_self ext-eq_weakening subtype_rel_weakening subtype_rel_dep_function tunion_wf corec_wf subtype_rel_transitivity type-monotone_fun_exp_top subtype_rel_wf subtype_rel-equal int_seg_wf primrec_wf fun_exp_wf isect_subtype_rel_trivial nat_wf iff_weakening_equal true_wf squash_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf le_wf fun_exp_unroll primrec-unroll int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le top_wf fun_exp0_lemma primrec0_lemma less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties void_wf compact-type2_wf sq_exists_wf p-selector_wf full-omega-unsat exists_wf equal-wf-T-base pi2_wf pi1_wf
Rules used in proof :  functionEquality isectEquality baseClosed imageMemberEquality universeEquality functionExtensionality imageElimination applyEquality cumulativity instantiate promote_hyp productElimination equalitySymmetry equalityTransitivity equalityElimination because_Cache dependent_set_memberEquality unionElimination axiomEquality independent_functionElimination computeAll independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution approximateComputation hyp_replacement applyLambdaEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    (Monotone(T.F  T)
    {}\mRightarrow{}  (((\mcap{}n:\mBbbN{}.  (F\^{}n  Top))  {}\mrightarrow{}  \mBbbB{})  \msubseteq{}r  \mcup{}n:\mBbbN{}.((F\^{}n  Top)  {}\mrightarrow{}  \mBbbB{}))
    {}\mRightarrow{}  ((\mcap{}n:\mBbbN{}.  compact-type2(F\^{}n  Top))  \msubseteq{}r  compact-type2(corec(T.F  T))))



Date html generated: 2018_05_21-PM-06_18_40
Last ObjectModification: 2018_05_16-PM-01_57_03

Theory : basic


Home Index