Nuprl Lemma : compact-type-corec-lemma0
∀[F:Type ⟶ Type]
  (Monotone(T.F T)
  
⇒ (((⋂n:ℕ. (F^n Top)) ⟶ 𝔹) ⊆r ⋃n:ℕ.((F^n Top) ⟶ 𝔹))
  
⇒ ((⋂n:ℕ. compact-type2(F^n Top)) ⊆r compact-type2(corec(T.F T))))
Proof
Definitions occuring in Statement : 
compact-type2: compact-type2(T)
, 
corec: corec(T.F[T])
, 
type-monotone: Monotone(T.F[T])
, 
fun_exp: f^n
, 
nat: ℕ
, 
bool: 𝔹
, 
subtype_rel: A ⊆r B
, 
tunion: ⋃x:A.B[x]
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
implies: P 
⇒ Q
, 
apply: f a
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
corec: corec(T.F[T])
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
compose: f o g
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
false: False
, 
nat: ℕ
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
compact-type2: compact-type2(T)
, 
sq_exists: ∃x:A [B[x]]
, 
tunion: ⋃x:A.B[x]
, 
pi2: snd(t)
, 
p-selector: p-selector(T;x;p)
Lemmas referenced : 
type-monotone_wf, 
subtype_rel_self, 
ext-eq_weakening, 
subtype_rel_weakening, 
subtype_rel_dep_function, 
tunion_wf, 
corec_wf, 
subtype_rel_transitivity, 
type-monotone_fun_exp_top, 
subtype_rel_wf, 
subtype_rel-equal, 
int_seg_wf, 
primrec_wf, 
fun_exp_wf, 
isect_subtype_rel_trivial, 
nat_wf, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
le_wf, 
fun_exp_unroll, 
primrec-unroll, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
top_wf, 
fun_exp0_lemma, 
primrec0_lemma, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
void_wf, 
compact-type2_wf, 
sq_exists_wf, 
p-selector_wf, 
full-omega-unsat, 
exists_wf, 
equal-wf-T-base, 
pi2_wf, 
pi1_wf
Rules used in proof : 
functionEquality, 
isectEquality, 
baseClosed, 
imageMemberEquality, 
universeEquality, 
functionExtensionality, 
imageElimination, 
applyEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
because_Cache, 
dependent_set_memberEquality, 
unionElimination, 
axiomEquality, 
independent_functionElimination, 
computeAll, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
approximateComputation, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    (Monotone(T.F  T)
    {}\mRightarrow{}  (((\mcap{}n:\mBbbN{}.  (F\^{}n  Top))  {}\mrightarrow{}  \mBbbB{})  \msubseteq{}r  \mcup{}n:\mBbbN{}.((F\^{}n  Top)  {}\mrightarrow{}  \mBbbB{}))
    {}\mRightarrow{}  ((\mcap{}n:\mBbbN{}.  compact-type2(F\^{}n  Top))  \msubseteq{}r  compact-type2(corec(T.F  T))))
Date html generated:
2018_05_21-PM-06_18_40
Last ObjectModification:
2018_05_16-PM-01_57_03
Theory : basic
Home
Index