Nuprl Lemma : type-monotone_fun_exp_top

[F:Type ⟶ Type]. ∀[n,m:ℕ].  (F^n Top) ⊆(F^m Top) supposing m ≤ supposing Monotone(T.F[T])


Proof




Definitions occuring in Statement :  type-monotone: Monotone(T.F[T]) fun_exp: f^n nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top so_apply: x[s] le: A ≤ B apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B and: P ∧ Q subtract: m subtype_rel: A ⊆B top: Top prop: sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} squash: T true: True iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) nat_plus: + less_than: a < b less_than': less_than'(a;b) not: ¬A false: False decidable: Dec(P) or: P ∨ Q ge: i ≥  bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b compose: g type-monotone: Monotone(T.F[T]) nequal: a ≠ b ∈ 
Lemmas referenced :  subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base minus-one-mul add-commutes minus-one-mul-top add-associates add-mul-special zero-mul zero-add subtract_wf subtype_rel_wf squash_wf true_wf fun_exp_add_apply top_wf fun_exp_wf iff_weakening_equal equal_wf type-monotone_wf add_functionality_wrt_le le_reflexive one-mul two-mul mul-distributes-right add-zero not-le-2 minus-zero add-swap omega-shadow less_than_wf mul-distributes mul-associates mul-commutes le-add-cancel-alt nat_properties decidable__le less_than_transitivity1 less_than_irreflexivity ge_wf fun_exp0_lemma false_wf not-ge-2 less-iff-le condition-implies-le minus-add minus-minus le-add-cancel le_weakening2 eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int not-equal-2 fun_exp_unroll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality setElimination rename dependent_set_memberEquality productElimination applyEquality isect_memberEquality voidElimination voidEquality minusEquality because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination lambdaFormation imageElimination universeEquality functionExtensionality imageMemberEquality baseClosed axiomEquality functionEquality multiplyEquality addEquality independent_pairFormation unionElimination intWeakElimination equalityElimination dependent_pairFormation promote_hyp

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[n,m:\mBbbN{}].    (F\^{}n  Top)  \msubseteq{}r  (F\^{}m  Top)  supposing  m  \mleq{}  n  supposing  Monotone(T.F[T])



Date html generated: 2017_04_14-AM-07_37_25
Last ObjectModification: 2017_02_27-PM-03_09_44

Theory : subtype_1


Home Index