Nuprl Lemma : do-apply-mu'

[A:Type]. ∀[P:A ⟶ ℕ ⟶ 𝔹]. ∀[d:∀x:A. Dec(∃n:ℕ(↑(P n)))]. ∀[x:A].
  {(↑(P do-apply(mu'(P);x))) ∧ (∀[i:ℕdo-apply(mu'(P);x)]. (¬↑(P i)))} supposing ↑can-apply(mu'(P);x)


Proof




Definitions occuring in Statement :  mu': mu'(P) do-apply: do-apply(f;x) can-apply: can-apply(f;x) int_seg: {i..j-} nat: assert: b bool: 𝔹 decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] guard: {T} all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a mu': mu'(P) do-apply: do-apply(f;x) can-apply: can-apply(f;x) p-mu-decider implies:  Q guard: {T} and: P ∧ Q not: ¬A false: False int_seg: {i..j-} nat: lelt: i ≤ j < k prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] top: Top exists: x:A. B[x] pi1: fst(t) isl: isl(x) outl: outl(x) assert: b ifthenelse: if then else fi  btrue: tt p-mu: p-mu(P;x) bfalse: ff
Lemmas referenced :  assert_witness do-apply_wf nat_wf mu'_wf assert_wf le_wf int_seg_wf subtype_rel_dep_function top_wf subtype_rel_union can-apply_wf all_wf decidable_wf exists_wf bool_wf p-mu-decider p-mu_wf true_wf false_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin sqequalRule sqequalHypSubstitution independent_functionElimination hypothesis productElimination independent_pairEquality extract_by_obid isectElimination applyEquality hypothesisEquality independent_isectElimination isect_memberEquality lambdaEquality dependent_functionElimination because_Cache setElimination rename dependent_set_memberEquality natural_numberEquality intEquality unionEquality lambdaFormation voidElimination voidEquality equalityTransitivity equalitySymmetry functionEquality universeEquality instantiate isectEquality cumulativity functionExtensionality unionElimination independent_pairFormation

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[d:\mforall{}x:A.  Dec(\mexists{}n:\mBbbN{}.  (\muparrow{}(P  x  n)))].  \mforall{}[x:A].
    \{(\muparrow{}(P  x  do-apply(mu'(P);x)))  \mwedge{}  (\mforall{}[i:\mBbbN{}do-apply(mu'(P);x)].  (\mneg{}\muparrow{}(P  x  i)))\} 
    supposing  \muparrow{}can-apply(mu'(P);x)



Date html generated: 2018_05_21-PM-06_29_55
Last ObjectModification: 2018_05_19-PM-04_40_50

Theory : general


Home Index