Nuprl Lemma : markov-streamless-function

(∀P:ℕ ⟶ ℙ((∀m:ℕ((P m) ∨ (P m))))  (∀m:ℕ(P m))))  (∃m:ℕ(P m))))
 (∀A,B:Type.  ((∃a:ℕ~ ℕa)  streamless(B)  streamless(A ⟶ B)))


Proof




Definitions occuring in Statement :  streamless: streamless(T) equipollent: B int_seg: {i..j-} nat: prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  implies:  Q all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat: so_apply: x[s] subtype_rel: A ⊆B exists: x:A. B[x] guard: {T} equipollent: B decidable: Dec(P) or: P ∨ Q biject: Bij(A;B;f) surject: Surj(A;B;f) squash: T true: True uimplies: supposing a not: ¬A false: False
Lemmas referenced :  markov-streamless-iff streamless_wf exists_wf nat_wf equipollent_wf int_seg_wf all_wf or_wf not_wf equipollent_inversion decidable__all_int_seg equal_wf squash_wf true_wf iff_weakening_equal and_wf exp_wf4 exp_wf2 equipollent_functionality_wrt_equipollent2 equipollent-exp equipollent_functionality_wrt_equipollent function_functionality_wrt_equipollent_right equipollent_weakening_ext-eq ext-eq_weakening function_functionality_wrt_equipollent_left
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution independent_functionElimination thin hypothesis dependent_functionElimination hypothesisEquality productElimination functionEquality cumulativity independent_pairFormation isectElimination sqequalRule lambdaEquality natural_numberEquality setElimination rename universeEquality instantiate applyEquality functionExtensionality because_Cache unionElimination inlFormation inrFormation imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed independent_isectElimination dependent_set_memberEquality applyLambdaEquality voidElimination dependent_pairFormation

Latex:
(\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}m:\mBbbN{}.  ((P  m)  \mvee{}  (\mneg{}(P  m))))  {}\mRightarrow{}  (\mneg{}(\mforall{}m:\mBbbN{}.  (\mneg{}(P  m))))  {}\mRightarrow{}  (\mexists{}m:\mBbbN{}.  (P  m))))
{}\mRightarrow{}  (\mforall{}A,B:Type.    ((\mexists{}a:\mBbbN{}.  A  \msim{}  \mBbbN{}a)  {}\mRightarrow{}  streamless(B)  {}\mRightarrow{}  streamless(A  {}\mrightarrow{}  B)))



Date html generated: 2018_05_21-PM-09_03_34
Last ObjectModification: 2017_07_26-PM-06_26_21

Theory : general


Home Index