Nuprl Lemma : member-zip
∀[A,B:Type].  ∀xs:A List. ∀ys:B List. ∀x:A. ∀y:B.  ((<x, y> ∈ zip(xs;ys)) 
⇒ {(x ∈ xs) ∧ (y ∈ ys)})
Proof
Definitions occuring in Statement : 
zip: zip(as;bs)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
top: Top
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
pi1: fst(t)
, 
guard: {T}
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
l_member_wf, 
zip_wf, 
guard_wf, 
and_wf, 
zip_nil_lemma, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
cons_wf, 
zip_cons_nil_lemma, 
zip_cons_cons_lemma, 
cons_member, 
pi2_wf, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
or_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
functionEquality, 
productEquality, 
independent_pairEquality, 
independent_functionElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
universeEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
unionElimination, 
applyEquality, 
inlFormation, 
independent_pairFormation, 
addLevel, 
inrFormation
Latex:
\mforall{}[A,B:Type].    \mforall{}xs:A  List.  \mforall{}ys:B  List.  \mforall{}x:A.  \mforall{}y:B.    ((<x,  y>  \mmember{}  zip(xs;ys))  {}\mRightarrow{}  \{(x  \mmember{}  xs)  \mwedge{}  (y  \mmember{}  ys)\})
Date html generated:
2016_05_15-PM-03_40_40
Last ObjectModification:
2015_12_27-PM-01_17_26
Theory : general
Home
Index