Nuprl Lemma : nil-iff-no-member
∀[T:Type]. ∀[L:T List].  uiff(L = [] ∈ (T List);∀[x:T]. (¬(x ∈ L)))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
nil: []
, 
list: T List
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
Lemmas referenced : 
list_induction, 
uiff_wf, 
equal_wf, 
list_wf, 
nil_wf, 
uall_wf, 
not_wf, 
l_member_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
and_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
null_cons_lemma, 
bfalse_wf, 
cons_wf, 
cons_member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
independent_functionElimination, 
independent_pairFormation, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
voidElimination, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
rename, 
productElimination, 
dependent_set_memberEquality, 
applyEquality, 
setElimination, 
voidEquality, 
setEquality, 
independent_pairEquality, 
axiomEquality, 
universeEquality, 
inlFormation
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    uiff(L  =  [];\mforall{}[x:T].  (\mneg{}(x  \mmember{}  L)))
Date html generated:
2016_05_15-PM-03_57_26
Last ObjectModification:
2015_12_27-PM-03_07_58
Theory : general
Home
Index