Nuprl Lemma : nil-iff-no-member

[T:Type]. ∀[L:T List].  uiff(L [] ∈ (T List);∀[x:T]. (x ∈ L)))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) nil: [] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A false: False prop: all: x:A. B[x] subtype_rel: A ⊆B top: Top iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q
Lemmas referenced :  list_induction uiff_wf equal_wf list_wf nil_wf uall_wf not_wf l_member_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse and_wf null_wf3 subtype_rel_list top_wf null_cons_lemma bfalse_wf cons_wf cons_member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis independent_functionElimination independent_pairFormation lambdaFormation equalityTransitivity equalitySymmetry independent_isectElimination voidElimination dependent_functionElimination because_Cache isect_memberEquality rename productElimination dependent_set_memberEquality applyEquality setElimination voidEquality setEquality independent_pairEquality axiomEquality universeEquality inlFormation

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    uiff(L  =  [];\mforall{}[x:T].  (\mneg{}(x  \mmember{}  L)))



Date html generated: 2016_05_15-PM-03_57_26
Last ObjectModification: 2015_12_27-PM-03_07_58

Theory : general


Home Index