Nuprl Lemma : priority-select-inr

[T:Type]. ∀[as:T List]. ∀[f,g:T ⟶ 𝔹].  uiff(priority-select(f;g;as) (inr ⋅ ) ∈ (𝔹?);(∀a∈as.(¬↑(f a)) ∧ (¬↑(g a))))


Proof




Definitions occuring in Statement :  priority-select: priority-select(f;g;as) l_all: (∀x∈L.P[x]) list: List assert: b bool: 𝔹 it: uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inr: inr  union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a iff: ⇐⇒ Q implies:  Q l_all: (∀x∈L.P[x]) not: ¬A false: False int_seg: {i..j-} rev_implies:  Q guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: less_than: a < b squash: T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  priority-select-property assert_wf select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf equal-wf-T-base bool_wf unit_wf2 priority-select_wf l_all_wf2 not_wf l_member_wf uiff_wf all_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination productElimination addLevel independent_pairFormation independent_isectElimination independent_functionElimination sqequalRule lambdaEquality independent_pairEquality voidElimination applyEquality functionExtensionality cumulativity because_Cache setElimination rename natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality computeAll imageElimination universeEquality instantiate unionEquality baseClosed productEquality setEquality lambdaFormation equalityTransitivity equalitySymmetry axiomEquality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].  \mforall{}[f,g:T  {}\mrightarrow{}  \mBbbB{}].
    uiff(priority-select(f;g;as)  =  (inr  \mcdot{}  );(\mforall{}a\mmember{}as.(\mneg{}\muparrow{}(f  a))  \mwedge{}  (\mneg{}\muparrow{}(g  a))))



Date html generated: 2018_05_21-PM-06_49_18
Last ObjectModification: 2017_07_26-PM-04_56_50

Theory : general


Home Index