Nuprl Lemma : priority-select-property
∀[T:Type]
  ∀as:T List. ∀f,g:T ⟶ 𝔹.
    ((priority-select(f;g;as) = (inl tt) ∈ (𝔹?) 
⇐⇒ ∃i:ℕ||as||. ((↑(f as[i])) ∧ (∀j:ℕi. (¬↑(g as[j])))))
    ∧ (priority-select(f;g;as) = (inl ff) ∈ (𝔹?) 
⇐⇒ ∃i:ℕ||as||. ((↑(g as[i])) ∧ (∀j:ℕi + 1. (¬↑(f as[j])))))
    ∧ (priority-select(f;g;as) = (inr ⋅ ) ∈ (𝔹?) 
⇐⇒ ∀i:ℕ||as||. ((¬↑(f as[i])) ∧ (¬↑(g as[i])))))
Proof
Definitions occuring in Statement : 
priority-select: priority-select(f;g;as)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
bfalse: ff
, 
btrue: tt
, 
bool: 𝔹
, 
it: ⋅
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
inr: inr x 
, 
inl: inl x
, 
union: left + right
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
it: ⋅
, 
nil: []
, 
select: L[n]
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s]
, 
squash: ↓T
, 
less_than: a < b
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
isl: isl(x)
, 
cand: A c∧ B
, 
priority-select: priority-select(f;g;as)
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
unit: Unit
, 
bool: 𝔹
, 
exposed-bfalse: exposed-bfalse
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
subtype_rel: A ⊆r B
, 
sq_type: SQType(T)
, 
colength: colength(L)
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
cons: [a / b]
, 
ge: i ≥ j 
, 
nat: ℕ
, 
true: True
, 
nat_plus: ℕ+
, 
assert: ↑b
, 
outl: outl(x)
, 
subtract: n - m
Lemmas referenced : 
istype-universe, 
list_wf, 
istype-assert, 
priority-select_wf, 
unit_wf2, 
length_of_cons_lemma, 
istype-base, 
stuck-spread, 
length_of_nil_lemma, 
int_term_value_add_lemma, 
itermAdd_wf, 
not_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
int_seg_properties, 
select_wf, 
assert_wf, 
length_wf, 
int_seg_wf, 
exists_wf, 
equal-wf-T-base, 
iff_wf, 
bool_wf, 
all_wf, 
list_induction, 
it_wf, 
btrue_neq_bfalse, 
btrue_wf, 
bfalse_wf, 
list_accum_nil_lemma, 
assert_of_bnot, 
eqff_to_assert, 
uiff_transitivity, 
eqtt_to_assert, 
list_accum_cons_lemma, 
bnot_wf, 
istype-nat, 
le_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
decidable__equal_int, 
spread_cons_lemma, 
int_subtype_base, 
set_subtype_base, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
subtype_base_sq, 
subtract-1-ge-0, 
istype-le, 
istype-false, 
colength_wf_list, 
colength-cons-not-zero, 
product_subtype_list, 
list-cases, 
istype-less_than, 
ge_wf, 
nat_properties, 
non_neg_length, 
cons_wf, 
select-cons-hd, 
false_wf, 
add-is-int-iff, 
nat_plus_properties, 
length_wf_nat, 
add_nat_plus, 
equal_wf, 
outl_wf, 
list_accum_wf, 
ifthenelse_wf, 
isl_wf, 
zero-add, 
add-commutes, 
add-swap, 
add-associates, 
select-cons-tl, 
add-member-int_seg2, 
select_cons_tl, 
assert_functionality_wrt_uiff, 
iff_weakening_uiff, 
add-subtract-cancel, 
subtract-add-cancel, 
select-nthtl0, 
int_seg_subtype_nat, 
subtype_rel_list, 
top_wf, 
select_cons_tl_sq2
Rules used in proof : 
universeEquality, 
instantiate, 
equalitySymmetry, 
sqequalBase, 
unionIsType, 
equalityIstype, 
productIsType, 
functionIsType, 
inhabitedIsType, 
addEquality, 
baseClosed, 
imageElimination, 
universeIsType, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
dependent_functionElimination, 
productElimination, 
independent_isectElimination, 
rename, 
setElimination, 
applyEquality, 
natural_numberEquality, 
closedConclusion, 
productEquality, 
because_Cache, 
hypothesis, 
functionEquality, 
lambdaEquality_alt, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
inrEquality_alt, 
applyLambdaEquality, 
equalityTransitivity, 
dependent_set_memberEquality_alt, 
equalityElimination, 
intEquality, 
baseApply, 
hypothesis_subsumption, 
promote_hyp, 
functionIsTypeImplies, 
axiomSqEquality, 
intWeakElimination, 
inlEquality_alt, 
pointwiseFunctionality, 
imageMemberEquality, 
unionEquality, 
hyp_replacement, 
cumulativity, 
Error :memTop, 
independent_pairEquality
Latex:
\mforall{}[T:Type]
    \mforall{}as:T  List.  \mforall{}f,g:T  {}\mrightarrow{}  \mBbbB{}.
        ((priority-select(f;g;as)  =  (inl  tt)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}||as||.  ((\muparrow{}(f  as[i]))  \mwedge{}  (\mforall{}j:\mBbbN{}i.  (\mneg{}\muparrow{}(g  as[j])))))
        \mwedge{}  (priority-select(f;g;as)  =  (inl  ff)
            \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}||as||.  ((\muparrow{}(g  as[i]))  \mwedge{}  (\mforall{}j:\mBbbN{}i  +  1.  (\mneg{}\muparrow{}(f  as[j])))))
        \mwedge{}  (priority-select(f;g;as)  =  (inr  \mcdot{}  )  \mLeftarrow{}{}\mRightarrow{}  \mforall{}i:\mBbbN{}||as||.  ((\mneg{}\muparrow{}(f  as[i]))  \mwedge{}  (\mneg{}\muparrow{}(g  as[i])))))
Date html generated:
2020_05_20-AM-08_07_00
Last ObjectModification:
2020_01_31-PM-02_51_23
Theory : general
Home
Index