Nuprl Lemma : proof_tree_ind_wf

[Sequent,Rule:Type]. ∀[effect:(Sequent × Rule) ⟶ (Sequent List?)]. ∀[Q:proof-tree(Sequent;Rule;effect) ⟶ ℙ].
[abort:∀s:Sequent. ∀r:Rule.  Q[proof-abort(s;r)] supposing ↑isr(effect <s, r>)].
[progress:∀s:Sequent. ∀r:Rule.
             ∀L:proof-tree(Sequent;Rule;effect) List
               (∀pf∈L.Q[pf])  Q[make-proof-tree(s;r;L)] supposing ||L|| ||outl(effect <s, r>)|| ∈ ℤ 
             supposing ↑isl(effect <s, r>)]. ∀[pf:proof-tree(Sequent;Rule;effect)].
  (proof_tree_ind(effect;abort;progress;pf) ∈ Q[pf])


Proof




Definitions occuring in Statement :  proof_tree_ind: proof_tree_ind(effect;abort;progress;pf) proof-abort: proof-abort(s;r) make-proof-tree: make-proof-tree(s;r;L) proof-tree: proof-tree(Sequent;Rule;effect) l_all: (∀x∈L.P[x]) length: ||as|| list: List outl: outl(x) assert: b isr: isr(x) isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q unit: Unit member: t ∈ T apply: a function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] union: left right int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  false: False not: ¬A and: P ∧ Q isl: isl(x) outl: outl(x) prop: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q all: x:A. B[x] uimplies: supposing a subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] proof-tree-induction-ext
Lemmas referenced :  all_wf make-proof-tree_wf l_member_wf l_all_wf btrue_neq_bfalse and_wf bfalse_wf assert_elim length_wf equal_wf isl_wf proof-abort_wf isr_wf assert_wf proof-tree_wf unit_wf2 list_wf isect_wf proof-tree-induction-ext
Rules used in proof :  isect_memberEquality axiomEquality levelHypothesis addLevel setEquality dependent_functionElimination voidElimination independent_functionElimination productElimination rename setElimination applyLambdaEquality independent_pairFormation dependent_set_memberEquality unionElimination lambdaFormation intEquality independent_isectElimination independent_pairEquality functionExtensionality isectEquality because_Cache unionEquality cumulativity productEquality functionEquality universeEquality sqequalHypSubstitution equalitySymmetry equalityTransitivity hypothesisEquality isectElimination lambdaEquality sqequalRule applyEquality hypothesis extract_by_obid instantiate thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[Sequent,Rule:Type].  \mforall{}[effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)].
\mforall{}[Q:proof-tree(Sequent;Rule;effect)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[abort:\mforall{}s:Sequent.  \mforall{}r:Rule.
                                                                                                          Q[proof-abort(s;r)] 
                                                                                                          supposing  \muparrow{}isr(effect  <s,  r>)].
\mforall{}[progress:\mforall{}s:Sequent.  \mforall{}r:Rule.
                          \mforall{}L:proof-tree(Sequent;Rule;effect)  List
                              (\mforall{}pf\mmember{}L.Q[pf])  {}\mRightarrow{}  Q[make-proof-tree(s;r;L)]  supposing  ||L||  =  ||outl(effect  <s,  r>)|| 
                          supposing  \muparrow{}isl(effect  <s,  r>)].  \mforall{}[pf:proof-tree(Sequent;Rule;effect)].
    (proof\_tree\_ind(effect;abort;progress;pf)  \mmember{}  Q[pf])



Date html generated: 2020_05_20-AM-08_04_56
Last ObjectModification: 2020_02_04-PM-02_15_40

Theory : general


Home Index