Nuprl Lemma : proof_tree_ind_wf
∀[Sequent,Rule:Type]. ∀[effect:(Sequent × Rule) ⟶ (Sequent List?)]. ∀[Q:proof-tree(Sequent;Rule;effect) ⟶ ℙ].
∀[abort:∀s:Sequent. ∀r:Rule.  Q[proof-abort(s;r)] supposing ↑isr(effect <s, r>)].
∀[progress:∀s:Sequent. ∀r:Rule.
             ∀L:proof-tree(Sequent;Rule;effect) List
               (∀pf∈L.Q[pf]) 
⇒ Q[make-proof-tree(s;r;L)] supposing ||L|| = ||outl(effect <s, r>)|| ∈ ℤ 
             supposing ↑isl(effect <s, r>)]. ∀[pf:proof-tree(Sequent;Rule;effect)].
  (proof_tree_ind(effect;abort;progress;pf) ∈ Q[pf])
Proof
Definitions occuring in Statement : 
proof_tree_ind: proof_tree_ind(effect;abort;progress;pf)
, 
proof-abort: proof-abort(s;r)
, 
make-proof-tree: make-proof-tree(s;r;L)
, 
proof-tree: proof-tree(Sequent;Rule;effect)
, 
l_all: (∀x∈L.P[x])
, 
length: ||as||
, 
list: T List
, 
outl: outl(x)
, 
assert: ↑b
, 
isr: isr(x)
, 
isl: isl(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
unit: Unit
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
union: left + right
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
false: False
, 
not: ¬A
, 
and: P ∧ Q
, 
isl: isl(x)
, 
outl: outl(x)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
proof-tree-induction-ext
Lemmas referenced : 
all_wf, 
make-proof-tree_wf, 
l_member_wf, 
l_all_wf, 
btrue_neq_bfalse, 
and_wf, 
bfalse_wf, 
assert_elim, 
length_wf, 
equal_wf, 
isl_wf, 
proof-abort_wf, 
isr_wf, 
assert_wf, 
proof-tree_wf, 
unit_wf2, 
list_wf, 
isect_wf, 
proof-tree-induction-ext
Rules used in proof : 
isect_memberEquality, 
axiomEquality, 
levelHypothesis, 
addLevel, 
setEquality, 
dependent_functionElimination, 
voidElimination, 
independent_functionElimination, 
productElimination, 
rename, 
setElimination, 
applyLambdaEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
unionElimination, 
lambdaFormation, 
intEquality, 
independent_isectElimination, 
independent_pairEquality, 
functionExtensionality, 
isectEquality, 
because_Cache, 
unionEquality, 
cumulativity, 
productEquality, 
functionEquality, 
universeEquality, 
sqequalHypSubstitution, 
equalitySymmetry, 
equalityTransitivity, 
hypothesisEquality, 
isectElimination, 
lambdaEquality, 
sqequalRule, 
applyEquality, 
hypothesis, 
extract_by_obid, 
instantiate, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[Sequent,Rule:Type].  \mforall{}[effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)].
\mforall{}[Q:proof-tree(Sequent;Rule;effect)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[abort:\mforall{}s:Sequent.  \mforall{}r:Rule.
                                                                                                          Q[proof-abort(s;r)] 
                                                                                                          supposing  \muparrow{}isr(effect  <s,  r>)].
\mforall{}[progress:\mforall{}s:Sequent.  \mforall{}r:Rule.
                          \mforall{}L:proof-tree(Sequent;Rule;effect)  List
                              (\mforall{}pf\mmember{}L.Q[pf])  {}\mRightarrow{}  Q[make-proof-tree(s;r;L)]  supposing  ||L||  =  ||outl(effect  <s,  r>)|| 
                          supposing  \muparrow{}isl(effect  <s,  r>)].  \mforall{}[pf:proof-tree(Sequent;Rule;effect)].
    (proof\_tree\_ind(effect;abort;progress;pf)  \mmember{}  Q[pf])
Date html generated:
2020_05_20-AM-08_04_56
Last ObjectModification:
2020_02_04-PM-02_15_40
Theory : general
Home
Index