Nuprl Lemma : sparse-rep-base_wf

[r:{-2..3-}]
  (sparse-rep-base(r) ∈ {L:{-1..2-List| 
                         (r = Σi<||L||.L[i]*2^i ∈ ℤ)
                         ∧ (||L|| 2 ∈ ℤ)
                         ∧ (∀i:ℕ||L|| 1. ((L[i] 0 ∈ ℤ) ∨ (L[i 1] 0 ∈ ℤ)))} )


Proof




Definitions occuring in Statement :  sparse-rep-base: sparse-rep-base(r) power-sum: Σi<n.a[i]*x^i select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  subtract: m add: m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sparse-rep-base: sparse-rep-base(r) subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] prop: and: P ∧ Q int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top less_than: a < b squash: T so_apply: x[s] sq_exists: x:A [B[x]]
Lemmas referenced :  small-sparse-rep-ext all_wf int_seg_wf sq_exists_wf list_wf equal_wf power-sum_wf length_wf_nat select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt length_wf intformless_wf int_formula_prop_less_lemma equal-wf-T-base subtract_wf or_wf itermSubtract_wf int_term_value_subtract_lemma itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality thin instantiate extract_by_obid hypothesis lambdaEquality sqequalHypSubstitution hypothesisEquality isectElimination minusEquality natural_numberEquality productEquality intEquality setElimination rename because_Cache independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination baseClosed equalityTransitivity equalitySymmetry axiomEquality

Latex:
\mforall{}[r:\{-2..3\msupminus{}\}]
    (sparse-rep-base(r)  \mmember{}  \{L:\{-1..2\msupminus{}\}  List| 
                                                  (r  =  \mSigma{}i<||L||.L[i]*2\^{}i)
                                                  \mwedge{}  (||L||  =  2)
                                                  \mwedge{}  (\mforall{}i:\mBbbN{}||L||  -  1.  ((L[i]  =  0)  \mvee{}  (L[i  +  1]  =  0)))\}  )



Date html generated: 2018_05_21-PM-08_34_38
Last ObjectModification: 2017_07_26-PM-05_59_52

Theory : general


Home Index