Nuprl Lemma : sparse-rep-base_wf
∀[r:{-2..3-}]
  (sparse-rep-base(r) ∈ {L:{-1..2-} List| 
                         (r = Σi<||L||.L[i]*2^i ∈ ℤ)
                         ∧ (||L|| = 2 ∈ ℤ)
                         ∧ (∀i:ℕ||L|| - 1. ((L[i] = 0 ∈ ℤ) ∨ (L[i + 1] = 0 ∈ ℤ)))} )
Proof
Definitions occuring in Statement : 
sparse-rep-base: sparse-rep-base(r)
, 
power-sum: Σi<n.a[i]*x^i
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
subtract: n - m
, 
add: n + m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sparse-rep-base: sparse-rep-base(r)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
, 
so_apply: x[s]
, 
sq_exists: ∃x:A [B[x]]
Lemmas referenced : 
small-sparse-rep-ext, 
all_wf, 
int_seg_wf, 
sq_exists_wf, 
list_wf, 
equal_wf, 
power-sum_wf, 
length_wf_nat, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
length_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
equal-wf-T-base, 
subtract_wf, 
or_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
itermAdd_wf, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
lambdaEquality, 
sqequalHypSubstitution, 
hypothesisEquality, 
isectElimination, 
minusEquality, 
natural_numberEquality, 
productEquality, 
intEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality
Latex:
\mforall{}[r:\{-2..3\msupminus{}\}]
    (sparse-rep-base(r)  \mmember{}  \{L:\{-1..2\msupminus{}\}  List| 
                                                  (r  =  \mSigma{}i<||L||.L[i]*2\^{}i)
                                                  \mwedge{}  (||L||  =  2)
                                                  \mwedge{}  (\mforall{}i:\mBbbN{}||L||  -  1.  ((L[i]  =  0)  \mvee{}  (L[i  +  1]  =  0)))\}  )
Date html generated:
2018_05_21-PM-08_34_38
Last ObjectModification:
2017_07_26-PM-05_59_52
Theory : general
Home
Index