Nuprl Lemma : sum-equal-terms

[n:ℕ]. ∀[a:ℕn ⟶ ℤ]. ∀[m:ℕ]. ∀[b:ℕm ⟶ ℤ].
  Σ(a[i] i < n) = Σ(b[j] j < m) ∈ ℤ 
  supposing permutation(ℤ;filter(λx.(¬b(x =z 0));map(λi.a[i];upto(n)));filter(λx.(¬b(x =z 0));map(λj.b[j];upto(m))))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) upto: upto(n) sum: Σ(f[x] x < k) filter: filter(P;l) map: map(f;as) int_seg: {i..j-} nat: bnot: ¬bb eq_int: (i =z j) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q nat:
Lemmas referenced :  equal_wf squash_wf true_wf istype-universe sum-l_sum int_seg_wf subtype_rel_self iff_weakening_equal l_sum_filter0 map_wf upto_wf l_sum_wf l_sum_functionality_wrt_permutation filter_wf5 bnot_wf eq_int_wf istype-int l_member_wf permutation_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType instantiate universeEquality intEquality sqequalRule because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination setElimination rename setIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType functionIsType

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[m:\mBbbN{}].  \mforall{}[b:\mBbbN{}m  {}\mrightarrow{}  \mBbbZ{}].
    \mSigma{}(a[i]  |  i  <  n)  =  \mSigma{}(b[j]  |  j  <  m) 
    supposing  permutation(\mBbbZ{};filter(\mlambda{}x.(\mneg{}\msubb{}(x  =\msubz{}  0));map(\mlambda{}i.a[i];upto(n)));
                                                filter(\mlambda{}x.(\mneg{}\msubb{}(x  =\msubz{}  0));map(\mlambda{}j.b[j];upto(m))))



Date html generated: 2020_05_20-AM-08_15_56
Last ObjectModification: 2020_01_04-PM-11_11_57

Theory : general


Home Index