Nuprl Lemma : sum-l_sum

[n:ℕ]. ∀[a:ℕn ⟶ ℤ].  (a[i] i < n) l_sum(map(λi.a[i];upto(n))) ∈ ℤ)


Proof




Definitions occuring in Statement :  l_sum: l_sum(L) upto: upto(n) sum: Σ(f[x] x < k) map: map(f;as) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q prop: uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top so_lambda: λ2x.t[x] label: ...$L... t true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  l_sum-sum int_seg_wf upto_wf lelt_wf l_member_wf subtype_base_sq int_subtype_base nat_wf sum_wf squash_wf true_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf length_upto le_wf equal_wf select_upto int_seg_properties decidable__equal_int intformeq_wf int_formula_prop_eq_lemma decidable__lt intformless_wf int_formula_prop_less_lemma iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename because_Cache hypothesis lambdaEquality applyEquality functionExtensionality hypothesisEquality dependent_set_memberEquality setEquality instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalRule functionEquality isect_memberEquality axiomEquality imageElimination unionElimination dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation computeAll universeEquality productElimination imageMemberEquality baseClosed

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}(a[i]  |  i  <  n)  =  l\_sum(map(\mlambda{}i.a[i];upto(n))))



Date html generated: 2017_04_17-AM-08_38_49
Last ObjectModification: 2017_02_27-PM-04_57_16

Theory : list_1


Home Index