Nuprl Lemma : sum-l_sum
∀[n:ℕ]. ∀[a:ℕn ⟶ ℤ].  (Σ(a[i] | i < n) = l_sum(map(λi.a[i];upto(n))) ∈ ℤ)
Proof
Definitions occuring in Statement : 
l_sum: l_sum(L)
, 
upto: upto(n)
, 
sum: Σ(f[x] | x < k)
, 
map: map(f;as)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
squash: ↓T
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
l_sum-sum, 
int_seg_wf, 
upto_wf, 
lelt_wf, 
l_member_wf, 
subtype_base_sq, 
int_subtype_base, 
nat_wf, 
sum_wf, 
squash_wf, 
true_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
length_upto, 
le_wf, 
equal_wf, 
select_upto, 
int_seg_properties, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
dependent_set_memberEquality, 
setEquality, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalRule, 
functionEquality, 
isect_memberEquality, 
axiomEquality, 
imageElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
universeEquality, 
productElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}(a[i]  |  i  <  n)  =  l\_sum(map(\mlambda{}i.a[i];upto(n))))
Date html generated:
2017_04_17-AM-08_38_49
Last ObjectModification:
2017_02_27-PM-04_57_16
Theory : list_1
Home
Index