Nuprl Lemma : test6
∀[x:ℤ]. (if 0 <z x then x else -x fi  ∈ ℕ)
Proof
Definitions occuring in Statement : 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
minus: -n, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
itermMinus_wf, 
int_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
sqequalRule, 
productElimination, 
independent_isectElimination, 
because_Cache, 
dependent_set_memberEquality, 
dependent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
minusEquality, 
axiomEquality
Latex:
\mforall{}[x:\mBbbZ{}].  (if  0  <z  x  then  x  else  -x  fi    \mmember{}  \mBbbN{})
Date html generated:
2018_05_21-PM-09_05_01
Last ObjectModification:
2017_07_26-PM-06_27_47
Theory : general
Home
Index