Nuprl Lemma : test6

[x:ℤ]. (if 0 <then else -x fi  ∈ ℕ)


Proof




Definitions occuring in Statement :  nat: ifthenelse: if then else fi  lt_int: i <j uall: [x:A]. B[x] member: t ∈ T minus: -n natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a nat: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf itermMinus_wf int_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination sqequalRule productElimination independent_isectElimination because_Cache dependent_set_memberEquality dependent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity independent_functionElimination minusEquality axiomEquality

Latex:
\mforall{}[x:\mBbbZ{}].  (if  0  <z  x  then  x  else  -x  fi    \mmember{}  \mBbbN{})



Date html generated: 2018_05_21-PM-09_05_01
Last ObjectModification: 2017_07_26-PM-06_27_47

Theory : general


Home Index