Nuprl Lemma : urec_subtype_base
∀[F:Type ⟶ Type]. urec(F) ⊆r Base supposing ∀T:Type. ((T ⊆r Base) 
⇒ ((F T) ⊆r Base))
Proof
Definitions occuring in Statement : 
urec: urec(F)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
urec: urec(F)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
Lemmas referenced : 
subtype_rel_wf, 
all_wf, 
base_wf, 
subtype_rel_transitivity, 
subtype_rel_self, 
subtract-add-cancel, 
fun_exp_add1, 
le_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
fun_exp0_lemma, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
fun_exp_wf, 
nat_wf, 
tunion_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
applyEquality, 
instantiate, 
universeEquality, 
hypothesisEquality, 
voidEquality, 
independent_isectElimination, 
lambdaFormation, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
unionElimination, 
dependent_set_memberEquality, 
because_Cache, 
addEquality, 
cumulativity, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  urec(F)  \msubseteq{}r  Base  supposing  \mforall{}T:Type.  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  ((F  T)  \msubseteq{}r  Base))
Date html generated:
2016_05_15-PM-06_51_05
Last ObjectModification:
2016_01_16-AM-09_51_28
Theory : general
Home
Index