Nuprl Lemma : urec_subtype_base

[F:Type ⟶ Type]. urec(F) ⊆Base supposing ∀T:Type. ((T ⊆Base)  ((F T) ⊆Base))


Proof




Definitions occuring in Statement :  urec: urec(F) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a urec: urec(F) so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q guard: {T}
Lemmas referenced :  subtype_rel_wf all_wf base_wf subtype_rel_transitivity subtype_rel_self subtract-add-cancel fun_exp_add1 le_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le fun_exp0_lemma less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties fun_exp_wf nat_wf tunion_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality applyEquality instantiate universeEquality hypothesisEquality voidEquality independent_isectElimination lambdaFormation setElimination rename intWeakElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination independent_pairFormation computeAll independent_functionElimination axiomEquality unionElimination dependent_set_memberEquality because_Cache addEquality cumulativity functionEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  urec(F)  \msubseteq{}r  Base  supposing  \mforall{}T:Type.  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  ((F  T)  \msubseteq{}r  Base))



Date html generated: 2016_05_15-PM-06_51_05
Last ObjectModification: 2016_01_16-AM-09_51_28

Theory : general


Home Index