Nuprl Lemma : poly-zero-val
∀[p:tree(ℤ)]. ∀[l:Top]. (p@l = 0 ∈ ℤ) supposing ↑poly-zero(p)
Proof
Definitions occuring in Statement : 
poly-int-val: p@l, 
poly-zero: poly-zero(p), 
tree: tree(E), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
guard: {T}, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
tree_leaf: tree_leaf(value), 
poly-zero: poly-zero(p), 
tree_leaf?: tree_leaf?(v), 
pi1: fst(t), 
tree_leaf-value: tree_leaf-value(v), 
pi2: snd(t), 
band: p ∧b q, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
tree_node: tree_node(left;right), 
polyconst: polyconst(k), 
top: Top
Lemmas referenced : 
top_wf, 
assert_wf, 
poly-zero_wf, 
tree_wf, 
tree-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
polyconst_val_lemma, 
assert_of_eq_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
promote_hyp, 
productElimination, 
hypothesis_subsumption, 
applyEquality, 
tokenEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
atomEquality, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
voidElimination, 
voidEquality, 
natural_numberEquality
Latex:
\mforall{}[p:tree(\mBbbZ{})].  \mforall{}[l:Top].  (p@l  =  0)  supposing  \muparrow{}poly-zero(p)
Date html generated:
2017_10_01-AM-08_32_36
Last ObjectModification:
2017_05_02-PM-04_02_27
Theory : integer!polynomial!trees
Home
Index