Nuprl Lemma : assert-is-dml-1

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:Point(free-DeMorgan-lattice(T;eq))].
  uiff(↑is-dml-1(T;eq;x);x 1 ∈ Point(free-DeMorgan-lattice(T;eq)))


Proof




Definitions occuring in Statement :  is-dml-1: is-dml-1(T;eq;x) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-1: 1 lattice-point: Point(l) deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a uiff: uiff(P;Q) implies:  Q is-dml-1: is-dml-1(T;eq;x) all: x:A. B[x] deq: EqDecider(T) guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  assert_wf is-dml-1_wf equal_wf lattice-point_wf free-DeMorgan-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf lattice-1_wf bdd-distributive-lattice_wf deq_wf assert_witness free-dml-deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis applyEquality sqequalRule instantiate lambdaEquality productEquality universeEquality because_Cache independent_isectElimination setElimination rename isect_memberFormation productElimination independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry independent_functionElimination lambdaFormation dependent_functionElimination independent_pairFormation functionExtensionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:Point(free-DeMorgan-lattice(T;eq))].
    uiff(\muparrow{}is-dml-1(T;eq;x);x  =  1)



Date html generated: 2020_05_20-AM-08_54_03
Last ObjectModification: 2017_07_28-AM-09_16_38

Theory : lattices


Home Index