Nuprl Lemma : assert-lattice-ble

[l:LatticeStructure]. ∀[eq:EqDecider(Point(l))]. ∀[a,b:Point(l)].  uiff(↑lattice-ble(l;eq;a;b);a ≤ b)


Proof




Definitions occuring in Statement :  lattice-ble: lattice-ble(l;eq;a;b) lattice-le: a ≤ b lattice-point: Point(l) lattice-structure: LatticeStructure deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  lattice-le: a ≤ b lattice-ble: lattice-ble(l;eq;a;b) member: t ∈ T deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a eqof: eqof(d) assert: b ifthenelse: if then else fi  prop: true: True bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb false: False not: ¬A
Lemmas referenced :  lattice-meet_wf bool_wf eqtt_to_assert safe-assert-deq true_wf equal_wf lattice-point_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot false_wf assert_wf lattice-ble_wf lattice-le_wf deq_wf lattice-structure_wf assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut applyEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality hypothesis introduction extract_by_obid isectElimination lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule because_Cache independent_pairFormation isect_memberFormation natural_numberEquality axiomEquality dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination independent_pairEquality isect_memberEquality

Latex:
\mforall{}[l:LatticeStructure].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[a,b:Point(l)].
    uiff(\muparrow{}lattice-ble(l;eq;a;b);a  \mleq{}  b)



Date html generated: 2020_05_20-AM-08_43_12
Last ObjectModification: 2017_07_28-AM-09_13_45

Theory : lattices


Home Index