Nuprl Lemma : face-lattice-le-1

T:Type. ∀eq:EqDecider(T). ∀x,y:Point(face-lattice(T;eq)).  (x ≤ ⇐⇒ fset-ac-le(union-deq(T;T;eq;eq);x;y))


Proof




Definitions occuring in Statement :  face-lattice: face-lattice(T;eq) lattice-le: a ≤ b lattice-point: Point(l) fset-ac-le: fset-ac-le(eq;ac1;ac2) union-deq: union-deq(A;B;a;b) deq: EqDecider(T) all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] face-lattice: face-lattice(T;eq) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice prop: and: P ∧ Q uimplies: supposing a
Lemmas referenced :  deq_wf lattice-join_wf lattice-meet_wf equal_wf uall_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set face-lattice_wf lattice-point_wf face-lattice-constraints_wf union-deq_wf free-dlwc-le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin unionEquality hypothesisEquality dependent_functionElimination hypothesis sqequalRule lambdaEquality because_Cache cumulativity applyEquality instantiate productEquality universeEquality independent_isectElimination

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}x,y:Point(face-lattice(T;eq)).
    (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  fset-ac-le(union-deq(T;T;eq;eq);x;y))



Date html generated: 2020_05_20-AM-08_51_56
Last ObjectModification: 2016_01_19-PM-07_12_28

Theory : lattices


Home Index