Nuprl Lemma : free-dlwc-le
∀[T:Type]
  ∀eq:EqDecider(T). ∀cs:T ⟶ fset(fset(T)). ∀x,y:Point(free-dist-lattice-with-constraints(T;eq;x.cs[x])).
    (x ≤ y 
⇐⇒ fset-ac-le(eq;x;y))
Proof
Definitions occuring in Statement : 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
lattice-le: a ≤ b
, 
lattice-point: Point(l)
, 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
lattice-le: a ≤ b
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
prop: ℙ
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c)
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
fset-all: fset-all(s;x.P[x])
, 
fset-contains-none: fset-contains-none(eq;s;x.Cs[x])
, 
fset-contains-none-of: fset-contains-none-of(eq;s;cs)
, 
fset-null: fset-null(s)
, 
null: null(as)
, 
fset-filter: {x ∈ s | P[x]}
, 
filter: filter(P;l)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
order: Order(T;x,y.R[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced : 
free-dlwc-point, 
lattice-point_wf, 
free-dist-lattice-with-constraints_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fset_wf, 
deq_wf, 
fset-ac-order-constrained, 
fset-contains-none_wf, 
fset-constrained-ac-glb-is-glb, 
fset-contains-none-closed-downward, 
assert_wf, 
f-subset_wf, 
fset-ac-le_wf, 
squash_wf, 
true_wf, 
fset-antichain_wf, 
fset-all_wf, 
subtype_rel_self, 
iff_weakening_equal, 
assert_witness, 
fset-null_wf, 
fset-filter_wf, 
bnot_wf, 
deq-f-subset_wf, 
bool_wf, 
all_wf, 
iff_wf, 
fset-constrained-ac-glb_wf, 
free-dlwc-meet
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
hypothesis, 
because_Cache, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
instantiate, 
productEquality, 
cumulativity, 
independent_isectElimination, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
functionExtensionality, 
productElimination, 
independent_pairFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}cs:T  {}\mrightarrow{}  fset(fset(T)).
    \mforall{}x,y:Point(free-dist-lattice-with-constraints(T;eq;x.cs[x])).
        (x  \mleq{}  y  \mLeftarrow{}{}\mRightarrow{}  fset-ac-le(eq;x;y))
Date html generated:
2020_05_20-AM-08_48_35
Last ObjectModification:
2018_05_20-PM-10_12_18
Theory : lattices
Home
Index